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Abstract 

Timber-concrete composite (TCC) is an innovative and efficient construction material which 

exploits the best properties of timber and concrete. The presence of shear connectors enables 

the two dissimilar materials to act together as a whole, resulting in an increase in global stiffness 

as well as load-carrying capacity. As this composite material is becoming increasingly more 

popular in the construction industry, there is a need to develop an analysis tool which has general 

applicability to timber-concrete composite systems with variations in loading schemes, specimen 

configurations, materials, and types of shear connectors. 

A generic 2D nonlinear finite element model is proposed in this thesis, and is verified through 

extensive numerical simulations of six experiment series carried out by researchers around the 

globe. Good agreement between experimentally observed behaviour and numerical simulations 

were generally obtained. 
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Chapter 1 Introduction 

 

 1.1 Background 

Timber-concrete composite (TCC) is a construction material which was first introduced to the 

construction industry in Europe, as an alternative to reinforced concrete, due to the steel 

shortage after World War II. This construction technique has seen rapid development in the past 

two decades and found extensive structural applications, including renovation and upgrading of 

existing timber structures, new construction of mid- to low-rise buildings, and construction of 

mid- to short-span bridges. The composite material comprises two materials, concrete and 

timber; the composite system typically takes the forms of a concrete slab supported by one or 

multiple timber beams, or by a timber panel, as demonstrated in Figure 1-1, respectively. The 

synergy or, in other words, the degree of composite action between the two dissimilar materials 

arises from the shear connectors, which provide resistance to interlayer slip after the composite 

material is loaded in flexure. Ideally, shear connectors need to be sufficiently stiff under service 

loads to ensure a high degree of composite action, yet sufficiently soft to provide global ductility 

to the composite system in the ultimate limit state. As such, a well-designed TCC system is 

expected to remain linear-elastic under serviceability limit state, and to undergo nonlinear plastic 

deformation as the shear connectors start to yield. 

 

Figure 1-1 Typical forms of TCC (Frangi and Fontana, 2003) 
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Although several analytical methods have been proposed to cope with the design and analysis of 

TCC structures, each analytical method has its own underlying assumptions and limited scope of 

application. As such, none of the methods are universally agreed upon and adopted in the 

mainstream design codes. The Gamma Method, for instance, is currently adopted in Eurocode 5. 

This method is suitable for linear-elastic analysis of TCC beams under serviceability limit state, 

yet it neglects the plastic deformation of the shear connectors which, ultimately, results in an 

overestimation of the post-yielding global stiffness. In addition, the Gamma Method was 

developed based on the analytical solution of a composite beam subjected to uniformly- 

distributed load; therefore, the method does not apply to situations where a TCC beam is 

subjected to point loads or non-uniformly-distributed loads. 

Various finite element models have been developed by several researchers (van der Linden, 1999; 

Fragiacomo, 2005; Persaud and Symons, 2006). While these models can predict the load-

deflection response with reasonable accuracy, they are limited to the analysis at a global level 

due to the nature of 1D FE analysis and the limitations of frame elements used in these models. 

Moreover, 1D frame FE models are not applicable to complex experimental setups, such as the 

prestressed specimens or the specimens built with cross-laminated timber (CLT) tested by Deam 

et al (2008) and Gerber (2016), respectively.  

In light of the current development of FE analysis in this field, this research programme aims to 

develop a generic 2D finite element model which takes material nonlinearity and yielding of shear 

connectors into account. The model will also need to be flexible and be easily adapted to deal 

with the variations of TCC experimental setups. 

VecTor2, originally developed at the University of Toronto for the nonlinear analysis of reinforced 

or prestressed concrete structures, is a powerful 2D nonlinear finite element analysis program. 

The program employs a total load, iterative secant stiffness algorithm which has been proven to 

be successful in the nonlinear analysis of reinforced concrete structures. It has the potential to 

analyze plain timber or TCC structures provided that appropriate material constitutive models 

are implemented. 
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1.2 Organization of Thesis 

This thesis presents the work undertaken to expand VecTor2’s capabilities to analyze plain timber 

and timber-concrete composite structures. A brief overview of the current developments of TCC 

technology, along with the research objectives of this thesis, are presented in Chapter 1. 

Chapter 2 provides a literature survey that covers the key aspects related to this research project. 

The topics reviewed in his chapter include the mechanical properties of wood, wood constitutive 

models, failure criteria, structural behaviour of TCC, connection systems, and analytical models 

of TCC, as well as numerical methods. 

Chapter 3 explains the details of the stiffness matrix formulation for membrane elements and 

bond-slip elements, implementation of wood constitutive models, and implementation of 

existing failure criteria applicable to wood. 

Chapter 4 validates the work reported in Chapter 3, through comparison of the experimental 

results and the numerical results of the specimens tested by Gentile (2000). The specimens 

investigated included plain timber beams and timber beams reinforced with GFRP bars, all of 

which were subjected to short-term monotonic loadings.  

Chapter 5 proposes a generic 2D model, and examines the model’s accuracy and general 

applicability through numerical corroborations of six experiment series carried out by 

researchers around the globe. The specimens investigated have variations in terms of 

experimental setups, materials, and types of shear connectors. 

Chapter 6 presents conclusions drawn from the numerical corroborations of this study, and 

provides recommendations for future work. 
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Chapter 2 LITERATURE REVIEW 

 

2.1 Introduction 

This chapter presents a literature survey that covers the different aspects related to this research 

study, including the mechanical properties and the constitutive relationships of timber, failure 

criteria of wood, structural behaviour of TCC, and numerical modelling of TCC structures 

subjected to short-term loadings.  

Although the material in this field is very broad, the information provided in this chapter is not 

intended to be exhaustive; instead, it provides an overview of the subject matter, and serves as 

a stepping stone to the subsequent work of this research study.  

 

2.2 Mechanical Properties 

Contrary to concrete, wood is characterized as an anisotropic material with three axes of 

symmetry; namely, longitudinal, radial, and tangential, denoted as L, R, T, respectively.  The 

mechanical properties along these axes are unique and independent of others. 

The elastic properties of timber can be described by twelve elastic constants, including three 

elastic moduli ( 𝐸𝐿 , 𝐸𝑅 , 𝐸𝑇 ), three shear moduli ( 𝐺𝑅𝑇 , 𝐺𝐿𝑇 , 𝐺𝐿𝑅 ), and six Poisson’s ratios 

(𝜇𝐿𝑅 , 𝜇𝑅𝐿 , 𝜇𝐿𝑇 , 𝜇𝑇𝐿 , 𝜇𝑅𝑇 , 𝜇𝑇𝑅 The shear moduli are specific to the planes as indicated by the 

subscripts, while for the Poisson’s ratios, the first letter of the subscripts refers to the direction 

of applied stress and the second letter to the direction of lateral deformation. The six Poisson’s 

ratio can be reduced to three according to the following relationship. 

𝜇𝑖𝑗

𝐸𝑗
=

𝜇𝑗𝑖

𝐸𝑖
 

where i ≠ j; i, j = L, R, T. 
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While in the elastic region, timber can be described by Hooke’s law as follows: 

(

  
 

𝜀𝐿𝐿

𝜀𝑅𝑅
𝜀𝑇𝑇

𝛾𝑅𝑇
𝛾𝐿𝑇

𝛾𝐿𝑅)

  
 

=

[
 
 
 
 
 
 
 
 
 
 
 
 
 

1

𝐸𝐿
−

𝜇𝐿𝑅

𝐸𝑅
−

𝜇𝐿𝑇

𝐸𝑇

−
𝜇𝑅𝐿

𝐸𝐿

1

𝐸𝑅
−

𝜇𝑅𝑇

𝐸𝑇

−
𝜇𝑇𝐿

𝐸𝐿
−

𝜇𝑇𝑅

𝐸𝑅

1

𝐸𝑇

0

0

1

𝐺𝑅𝑇
0 0

0
1

𝐺𝐿𝑇
0

0 0
1

𝐺𝐿𝑅]
 
 
 
 
 
 
 
 
 
 
 
 
 

(

  
 

𝜎𝐿𝐿

𝜎𝑅𝑅

𝜎𝑇𝑇
𝜎𝑅𝑇

𝜎𝐿𝑇

𝜎𝐿𝑅)

  
 

 

Or simply 

𝜺 = 𝑪𝝈

𝝈 = 𝑫𝜺

𝑫 = 𝑪−𝟏

where 𝜺 is the strain vector, 𝝈 is the stress vector, 𝑫 is the material stiffness matrix, and 𝑪 is the 

compliance matrix.  

Although the mechanical properties of wood differ with respect to species, moisture content, 

and temperature, as well as density, the following relations (Bodig 1982) can be used to roughly 

relate  one another: 

𝐸𝐿 ∶ 𝐸𝑅 ∶ 𝐸𝑇 ≈ 20 ∶ 1.6 ∶ 1 

𝐺𝐿𝑅 ∶ 𝐺𝐿𝑇 ∶ 𝐺𝑅𝑇 ≈ 10 ∶ 9.4 ∶ 1 

𝐸𝐿 ∶ 𝐺𝐿𝑅 ≈ 14 ∶ 1 
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2.3 Constitutive Relations 

Similar to the mechanical properties, the constitutive relations of wood vary by axes of symmetry. 

Figure 2-1 (Holmberg et al.,1998) demonstrates typical stress-strain curves for wood along 

different axes of symmetry.  

 

Figure 2-1 Typical stress-strain curves for wood (Holmberg et al.,1998) 

As can be seen, wood, when subjected to axial tension along the longitudinal direction, behaves 

in a linear-elastic manner up to the proportional limit, followed by a negligible amount of plastic 

deformation. Such plasticity is often ignored by researchers in the field. By contrast, significant 

plasticity can be found when wood is subjected to axial compression in the longitudinal direction. 

Similar stress-strain behaviours can be found in both radial and tangential directions. For this 

reason, wood is sometimes regarded as transversely isotropic material.  

It should be noted that these stress-strain curves are typically obtained from small wood 

specimens which are straight-grained and are clear of visible defects. In structural applications, 

the size of a wood member is often much greater, resulting in a reduced tensile strength. Such 

reduction in tensile strength arises from the presence of defects such as knots, finger joints, or 
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stress concentration due to grain discontinuity. Nevertheless, the stress-strain curves in 

compression agree fairly well with those shown in Figure 2-1.  

Many researchers have dealt with the nonlinear stress-strain behaviour of timber in compression. 

Neely (1898) proposed a simple model which assumes an elasto-plastic stress-strain relationship 

in compression with the material remaining linear-elastic in tension (Figure 2-2a). A slight 

modification was suggested by Bazan (1980) (Figure 2-2b), in which the stress-strain relationship 

remains linear elastic up to the proportional limit, followed by a linear decline in stress with 

increasing strain. The limitation of Bazan’s model is that the model will not work for large strain 

since it may produce negative stress. 

Malotra and Mazur (1970) suggested a nonlinear stress-strain relation (Figure 2-2c) which was 

first introduced by Ylinen (1956), and is given by: 

𝜀 =  
1

𝐸
[𝑐 ∙ 𝜎 − (1 − 𝑐) ∙ 𝑓𝑐 ∙ ln (1 −

𝜎

𝑓𝑐
) 

where 𝜀 is strain, 𝜎 is stress, 𝑓𝑐  is maximum compression stress, 𝐸 is Young’s modulus and 𝑐 is 

the shape parameter. 

A detailed study of the stress-strain relationship of timber was carried out by Glos (1978) using 

specimens subjected to longitudinal axial compression. Based on experimental data, a nonlinear 

curve with polynomials up to the 7th order was obtained (Figure 2-2d). The stress-strain 

relationship proposed by Glos is as follows: 

𝜎 =
𝜀

𝜀1⁄ + 𝐺1 ∙ (𝜀 𝜀1⁄ )7

𝐺2 + 𝐺3 ∙ (𝜀 𝜀1⁄ ) + 𝐺4 ∙ (𝜀 𝜀1⁄ )7
 

𝐺1 =
100 ∙ 𝑓𝑠

6𝐸 ∙ (1 −
𝑓𝑠

𝑓𝑐
⁄ )

 

𝐺2 = 1
𝐸⁄  

𝐺3 = 1
𝑓𝑐

⁄ − 7
6𝐸⁄  

𝐺4 =
𝐺1

𝑓𝑠
⁄  
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where 𝜀 is strain, 𝜎 is stress, 𝐸 is the Young’s modulus, 𝑓𝑐  is the maximum compression stress, 𝑓𝑠 

is the residual stress, and 𝜀1is the strain corresponds to maximum stress. 

The four parameters (𝐺1to 𝐺4) that define the shape of the stress-strain curve were determined 

using curvilinear regression techniques. The regression accounts for multiple wood properties 

measured from the specimens, including density, moisture content, knot area ratio, and 

percentage of compression wood.  

The advantages of the Glos model include: (1) the model will not produce negative stress even 

at large strain; (2) the model is in better agreement with the true shape of the stress-strain curve 

compared to other models. Conversely, the drawback of this model is that the four parameters 

are determined based on specific material properties and need to be calibrated for each data set. 

In addition, most experiments are typically terminated once the peak compression stress has 

been reached and thus the full stress-strain curves may not be readily available. 

The Glos model can be simplified based on the following relations:  

𝑓𝑠 = 0.8𝑓𝑐 

𝜀1 = 0.008 ~ 0.012 

𝜀𝑢 ≈ 3𝜀1 

 

Figure 2-2 Proposed stress-strain curves in compression (Lau, 2000) 
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2.4 Failure Criteria of Wood 

The failure modes of wood can be extremely complex as they can be induced by one or more 

mechanical stimuli. Failure of a timber beam, for instance, may be caused by rupture of the 

tension fibres, delamination of fibres due to horizontal shear, buckling of the compression fibres, 

or a mix of all three. This section reviews some of the failure criteria applicable to wood. These 

criteria were either developed for wood, or apply to orthotropic composite material in general, 

such as wood.  

The Hankinson formula (1921) is the first well-known one-dimensional empirical formula 

developed and it provides adequate results for compression and tension in general.  

Hill (1950) proposed a failure criterion that is adapted from the von Mises criterion and has the 

ability to deal with the anisotropic effects of wood. A modification to the Hill criterion was 

suggested by Azzi and Tsai (1965), known as Tsai-Hill criterion. The Tsai-Hill criterion is applicable 

to composite materials that have identical mechanical properties in the plane perpendicular to 

the fibre orientation. 

The Norris criterion (1950), originally developed for application to glued laminated timber, has 

been extensively applied for modelling of strength in solid wood. Several researchers (Van der 

Put 2005, Kasal and Leichti 2005; de Ruvo et al. 1980), however, have reported that it 

underpredicts when biaxial loading is combined with shear. 

Hoffman (1967) proposed a model that accounts for the difference between tensile strength and 

compressive strength. It may be seen as an extension of the Hill criterion. This criterion has been 

widely used for the analysis of brittle composite materials such as wood subjected to tension.  

The Hashin failure criterion (1980) was initially developed to account for the failure modes of 

unidirectional fibre composite. This model assumes no stress interaction between axes of 

symmetry. According to Hashin, fibre composite materials can have two primary failure modes 

as shown in Figure 2-3, including fibre failure mode and matrix failure mode. With the fibre mode 

the failure plane is approximately perpendicular to fibre direction; with the matrix mode, planar 

fracture takes place in the fibre direction.  
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Figure 2-3 Failure modes and failure planes (Hashin, 1980) 

Both compression and tension can give rise to the two failure mechanisms. Therefore, there are 

four failure modes, namely tensile fibre mode, compressive fibre mode, tensile matrix mode, and 

compressive matrix mode. Similar to Tsai-Hill criterion, Hashin’s model is applicable to 

transversely isotropic materials.  

 

2.5 Structural Behaviour of TCC Beams 

Timber-concrete composite (TCC) material, as the name suggests, involves two dissimilar 

materials acting together as one. The synergy between timber and concrete arises from the 

presence of shear connectors positioned at the interface. The degree of composite action, a term 

commonly used to quantify the effectiveness of the synergy, depends heavily on the interlayer 

stiffness. There are three case scenarios as presented in Figure 2-4 (Lukaszewka, 2009), including 

full composite action, partial composite action, and no composite action. In the case of full 

composite action, the interlayer is considered to be infinitely rigid and therefore slip cannot occur, 

whereas in the case of no composite action, the interlayer stiffness is assumed to be zero, 

allowing slip to occur freely. The actual degree of composite action of TCC systems generally lies 

between the two extremes. To quantify the degree of composite action, the following equation 

may be used: 

𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =  
𝛿 − 𝛿𝑁

𝛿𝐹 − 𝛿𝑁
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where 𝛿 is the actual deflection, 𝛿𝑁 is the theoretical deflection assuming no composite action, 

and 𝛿𝐹 is the theoretical deflection assuming full composite action. 

 

Figure 2-4 Definition of composite action (Lukaszewka, 2009) 

For any TCC system to be efficient, three design criteria must be satisfied: (1) the timber member 

must be strong enough to resist both bending and tension induced by gravity loads applied on 

the beam; (2) the connection system must be sufficiently strong to transfer the design shear force 

and be sufficiently stiff to provide a high degree of composite action; and (3) the connection 

system must be sufficiently ductile to provide overall ductility to the entire composite system. 

Figure 2-5 presents a typical load-deflection curve for TCC beams subjected to short-term 

bending. The curve starts with a linear-elastic branch followed by a nonlinear softening portion. 

Such nonlinearity is likely caused by cracking of concrete, buckling of wood fibres under 

compression, or progressive yielding of shear connectors. The ultimate failure of TCC beams 

normally arises from rupturing of wood fibres in the tension zone, particularly near knots or finger 

joints. 
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Figure 2-5 Typical load-deflection response of TCC 

 

2.6 Connection Systems  

A wide range of connection systems has been developed over the past decades, from simple nails 

to concrete notches reinforced with steel bars. These connection systems have unique load-slip 

responses determined through push-out tests. In general, connection systems are evaluated in 

three aspects, including stiffness, strength, and ductility. Ideally, connection systems should be: 

1) strong enough to resist the horizontal shear force along the interface; 2) sufficiently stiff prior 

to yielding, resulting in a high degree of composite action; and 3) sufficiently ductile after yielding, 

providing overall ductility to the global TCC system. Figure 2-6 presents typical load-slip 

relationships for a number of connection systems.  

 

Figure 2-6 Comparison of different connection systems (Dias, 2005) 
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2.7 Analytical Methods for TCC 

There are a number of nonlinear analytical methods developed to date that address the yielding 

of shear connectors. The Gamma (γ) Method, prescribed by Eurocode 5, neglects the plastic 

deformations of shear connectors upon yielding. This assumption automatically leads to an 

overestimation of the post-yielding load-carrying capacity of TCC systems. The Frozen Shear 

Force model (van der Linden, 1999), on the other hand, accounts for both the elastic and plastic 

deformations of shear connectors. However, the method assumes simultaneous yielding of all 

shear connectors, resulting in an underestimation of the post-yielding global structural stiffness. 

Zhang (2013) proposed an analytical solution that combines the strengths of the Gamma Method 

and the Frozen Shear Force model together, producing a more accurate post-yielding load-

deflection response over the predecessors. In Zhang’s method, shear connectors are assumed to 

be elasto-plastic and are allowed to yield progressively. 

 

2.8 Numerical Modelling of TCC  

A number of researchers have used the finite-element method (FEM) to obtain the global load-

deflection response of TCC structures subjected to short-term bending. 

A one-dimensional FE model (Figure 2-7) was presented by van der Linden (1999) using the DIANA 

finite-element program (DIANA, 1992). In his model, shell elements were used to model the 

concrete slab while frame elements were used for the timber joist. The shear connectors were 

modelled as distinct spring elements. Only half of the beam was modelled due to symmetry. The 

Tresca criterion (DIANA, 1992) and Hoffman criterion (1967) were implemented for concrete and 

timber, respectively. The nonlinear load-slip response of shear connectors was approximated as 

multi-linear curve. Unfortunately, van der Linden did not provide any direct comparison of the 

numerical results against experimental data. Instead, the FE model was used in conjunction with 

a Monte Carlo simulation to obtain a mean load-deflection response.  
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Figure 2-7 FE model (van der Linden, 1999) 

Fragiacomo (2005) presented a different version of one-dimensional FE model (Figure 2-8) that 

consisted of two parallel beam elements, the concrete slab and the timber joist, connected with 

smeared spring elements that represented the shear connectors. A nonlinear uniaxial stress-

strain relationship with a softening branch was used for concrete in compression and tension, 

while an elasto-brittle relationship in tension and elasto-plastic with limited ductility stress-strain 

relationship in compression were used for timber. This model was validated against actual TCC 

specimens tested by Lukaszewska (2009) and by Fragiacomo (2012), providing good agreement. 
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Figure 2-8 1D FE model (Fragiacomo, 2005) 

Persaud and Symons (2006) developed a FE model (Figure 2-9) in ABAQUS to model their TCC 

specimen. Beam elements were used to model the concrete slab and the timber joist. Both 

timber and concrete were modelled as linear-elastic materials with no cracking in concrete. The 

shear connectors were modelled as discrete spring elements.  

Overall, the numerical result was in good agreement with the experimental data, particularly for 

the early load stages up to fifty percent of the collapse load. However, the model underpredicted 

the deflection in the final load stages. The authors suggested the discrepancy was likely due to 

cracking of concrete which was not considered in the material models. 

 

Figure 2-9 FE model in ABAQUS (Persaud and Symons, 2006) 
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Chapter 3 VecTor2 Methodology 

 

3.1 Introduction 

This chapter discusses the numerical modelling of timber-concrete composite (TCC) structures 

using VecTor2, a two-dimensional finite element program specifically developed for the analysis 

of reinforced concrete membrane structures subjected to static and dynamic loading. VecTor2 

employs a total load algorithm with an iterative secant stiffness formulation, using the Modified 

Compression Field Theory (MCFT) (Vecchio and Collins, 1986) and the Disturbed Stress Field 

Model (DSFM) (Vecchio, 2000) as the governing behavioural models. These behavioural models 

consider cracked reinforced concrete as an orthotropic material, with rotating cracks smeared 

through the concrete elements. To date, VecTor2 has found extensive application in research 

studies and forensic analysis of existing reinforced concrete structures. It has the potential to be 

extended to analyse timber or TCC structures provided that adequate timber models and failure 

criteria are implemented.  

 

3.2 Stiffness Matrix Formulation 

3.2.1 Material Stiffness Matrix Formulation 

Figure 3-1 demonstrates the global coordinate reference system used in VecTor2.  

 

Figure 3-1 VecTor2 coordinate reference systems (Vecchio, 1990) 
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For any elements in VecTor2, the total strains [𝜀] are related to element stresses [𝜎] by the 

material stiffness matrix [𝐷], as follows: 

 [𝜎] = [𝐷][𝜀] (3-1) 

The material stiffness matrix formulation in VecTor2 varies by materials and element types. The 

material stiffness matrix for concrete is evaluated as a composite stiffness matrix, as such: 

 
[𝐷] = [𝐷𝑐] + ∑[𝐷𝑠]𝑖

𝑛

𝑖=1

  (3-2) 

where [𝐷𝑐]  is the concrete material stiffness matrix, and [𝐷𝑠]𝑖  is reinforcement component 

stiffness matrix in the 𝑖𝑡ℎ direction. 

As the MCFT and DSFM treat the reinforced concrete as an orthotropic material in the principal 

stress directions, it is necessary to formulate the concrete material stiffness matrix, [𝐷𝑐]’, with 

respect to these directions. If it is assumed that the post-cracking Poisson’s effect is negligible, 

then [𝐷𝑐]’ can be expressed as follows: 

 [𝐷𝑐]′ = [

𝐸𝑐1
̅̅ ̅̅ 0 0

0 𝐸𝑐2
̅̅ ̅̅ 0

0 0 𝐺𝑐
̅̅ ̅

] (3-3) 

The secant moduli 𝐸𝑐1
̅̅ ̅̅  , 𝐸𝑐2

̅̅ ̅̅  , 𝐺𝑐
̅̅ ̅ are computed from the current values of the principal stresses, 

𝑓𝑐1 and 𝑓𝑐2, and the corresponding principal net concrete strains, 𝜀𝑐1 and 𝜀𝑐2, as follows: 

 𝐸𝑐1
̅̅ ̅̅ =

𝑓𝑐1
𝜀𝑐1

 ,     𝐸𝑐2
̅̅ ̅̅ =

𝑓𝑐2
𝜀𝑐2

 ,     𝐺𝑐
̅̅ ̅ =

𝐸𝑐1
̅̅ ̅̅ ∙ 𝐸𝑐2

̅̅ ̅̅

𝐸𝑐1
̅̅ ̅̅ + 𝐸𝑐2

̅̅ ̅̅
 

 
(3-4) 

Similarly, the reinforcement component stiffness matrices, [𝐷𝑠]𝑖
′  must be first evaluated with 

respect to their longitudinal axes. The reinforcement is assumed only to resist uniaxial stress, and 

be evenly distributed through the element. Thus, [𝐷𝑠]𝑖
′ is given as: 



18 
 

 

 

(3-5) 

where 𝜌𝑖  is the reinforcement ratio for the reinforcement component and the secant modulus 

𝐸𝑠𝑖
̅̅ ̅̅  is computed based on the current stress 𝑓𝑠𝑖  and strain 𝜀𝑠𝑖, as follows. 

 

              

 
(3-6) 

In VecTor2, wood can be approximated as a fixed orthotropic material with two axes of symmetry: 

parallel to the grain and perpendicular to the grain. This represents a significant deviation to how 

cracked concrete is modelled in VecTor2, where the axes of orthotropy typically rotate. The 

Poisson’s effect may not be neglected and the material stiffness matrix for wood, [𝐷𝑤], subjected 

to plane stress condition, is taken as: 

 [𝐷𝑤]′ =  

[
 
 
 
 
 
 

1

𝐸𝐿
̅̅ ̅

−
𝜐𝑇𝐿

𝐸𝑇
̅̅̅̅

0

−
𝜐𝐿𝑇

𝐸𝐿
̅̅ ̅

1

𝐸𝑇
̅̅̅̅

0

0 0
1

𝐺𝐿𝑇
̅̅ ̅̅ ̅]

 
 
 
 
 
 
−1

 (3-7) 

The secant moduli 𝐸𝐿
̅̅ ̅, 𝐸𝑇

̅̅̅̅ , and 𝐺𝐿𝑇
̅̅ ̅̅ ̅ can be computed in a similar fashion as done for concrete.  

The material stiffness matrices, [𝐷𝑐]′ , [𝐷𝑠]𝑖
′ , and [𝐷𝑤]′ are transformed from their respective 

local coordinate systems to the global coordinate reference system by means of the 

transformation matrix, [𝑇], as follows: 

 [𝐷𝑐] =  [𝑇𝑐]
𝑇[𝐷𝑐]′[𝑇𝑐] (3-8) 

 [𝐷𝑠]𝑖 = [𝑇𝑠𝑖]
𝑇[𝐷𝑠𝑖]′[𝑇𝑠𝑖] (3-9) 

 [𝐷𝑤] =  [𝑇𝑤]𝑇[𝐷𝑤]′[𝑇𝑤] (3-10) 
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[𝑇] =  [

𝑐𝑜𝑠2𝜓 𝑠𝑖𝑛2𝜓 𝑐𝑜𝑠𝜓 ∙ 𝑠𝑖𝑛𝜓

𝑠𝑖𝑛2𝜓 𝑐𝑜𝑠2𝜓 −𝑐𝑜𝑠𝜓 ∙ 𝑠𝑖𝑛𝜓

−2𝑐𝑜𝑠𝜓 ∙ 𝑠𝑖𝑛𝜓 2𝑐𝑜𝑠𝜓 ∙ 𝑠𝑖𝑛𝜓 𝑐𝑜𝑠2𝜓 − 𝑠𝑖𝑛2𝜓

] (3-11) 

For concrete, the angle 𝜓 is the inclination of the principal tensile axis with respect to the positive 

x-axis, while for reinforcement, 𝜓 is the angle between the orientation of the reinforcement and 

the positive x-axis. For wood, 𝜓 is the angle between the grain orientation and the positive x-axis 

(counterclockwise positive). 

 

3.2.2 Element Stiffness Matrix Formulation 

Once the material stiffness matrix is determined, the element stiffness matrix [𝑘]  can be 

determined as follows: 

 [𝑘] =  ∫ [𝐵]𝑇[𝐷]′[𝐵] 𝑑𝑉
 

𝑣𝑜𝑙

 (3-12) 

where [𝐵] is the strain-displacement matrix with its form dependent on the element type, which 

may be triangular, rectangular, and quadrilateral. 

Further details of VecTor2 can be found in “VecTor2 and FormWorks User’s Manual” (Wong et 

al., 2013). 

 

3.2.3 Constitutive Model for Wood 

The accuracy of the constitutive model is critical as it heavily influences the material stiffness 

matrix. In order to model timber and TCC structures, a nonlinear constitutive model for wood has 

been implemented in VecTor2. The constitutive model adopted for wood consists of both linear 

and nonlinear portions. The Glos model (1978) has been chosen for wood in compression, while 

a linear-elastic behaviour is assumed for wood in tension up to peak tensile stress, followed by a 

linear softening branch. The linear softening branch is intentionally included for the modelling of 
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timber structures reinforced with fibre-reinforced polymers (FRP); more details will be given in 

Chapter 4. A typical stress-strain curve for wood in the grain orientation is shown in Figure 3-2. 

 

Figure 3-2 Typical stress-strain curve for wood (grain direction) 

The formulation of the Glos model is given as: 

 𝜎 =
𝜀

𝜀1⁄ + 𝐺1 ∙ (𝜀 𝜀1⁄ )7

𝐺2 + 𝐺3 ∙ (𝜀 𝜀1⁄ ) + 𝐺4 ∙ (𝜀 𝜀1⁄ )7
 (3-13) 

 
𝐺1 =

100 ∙ 𝑓𝑠

6𝐸 ∙ (1 −
𝑓𝑠

𝑓𝑐
⁄ )

 
(3-14) 

 𝐺2 = 1
𝐸⁄  (3-15) 

 𝐺3 = 1
𝑓𝑐

⁄ − 7
6𝐸⁄  (3-16) 

 𝐺4 =
𝐺1

𝑓𝑠
⁄  (3-16) 

where 𝜀  is the net strain, 𝜎  is the stress, 𝐸  is the Young’s modulus, 𝑓𝑐  is the maximum 

compression stress, 𝑓𝑠 is the residual stress, and 𝜀1is the strain corresponding to maximum stress.  

The Glos model can be simplified based on the following relations (Glos, 1978):  

𝑓𝑠 = 0.8𝑓𝑐 

𝜀1 = 0.008 ~ 0.012 (0.010) 

𝜀𝑢 ≈ 3𝜀1 
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The stress-strain behaviour in the transverse direction is approximated as linear elastic-plastic 

for both compression and tension. The elastic modulus is typically taken as 5% of that in the 

longitudinal direction. A typical stress-strain curve for wood in transverse orientation is 

presented in Figure 3-3. 

 

Figure 3-3 Typical stress-strain curve for wood (transverse direction) 

 

3.3 Modelling of Shear Connectors 

3.3.1 Bond-Slip Elements 

The shear connectors connecting the timber and the concrete components can be modelled by 

bond-slip elements. VecTor2 has two built-in bond-slip elements: link elements and contact 

elements.  

The link element is a non-dimensional element defined by two different nodes sharing the same 

coordinates prior to slippage. It may be idealized as two springs orthogonal to one another. One 

spring deforms tangentially to the connected elements while the other spring deforms 

perpendicular to the connected elements. A graphical representation of the link element is 

presented in Figure 3-4. 



22 
 

 

Figure 3-4 The link element (Wong et el., 2004) 

The contact element, shown in Figure 3-5, is a four-noded element with linear dimension, defined 

as the distance between node i (j) and node m (n). The four nodes (i, j, m, n) defining the element 

are divided into two node pairs. Similar to the link element, the nodes within each node pair 

share the identical coordinates prior to slippage. 

 

Figure 3-5 The contact element (Wong et el., 2004) 

 

The contact element represents a continuous interface along the shared edge of the connected 

elements. With two node pairs defining the contact interface, the displacement of any point 



23 
 

along the contact element is linearly interpolated from the nodal displacements to ensure 

compatibility of the connected elements. 

Since the link element is dimensionless, it is suitable for situations where the shear connectors 

are concentrated at distinct locations, such as screw or dowel type fasteners. By contrast, the 

contact element may be considered as a more flexible and realistic representation of the shear 

connectors. The contact element may be used to model concentrated connectors, as well as 

those connectors that are large in size such as notched concrete connections, or those that are 

continuous along the span, such as continuous metal plate connections. However, as a trade-off, 

the stiffness formulation for the contact element is inherently more complex and requires more 

computation effort than that for the link element. Additional details regarding stiffness 

formulations of the bond-slip elements may be found in “VecTor2 and FormWorks User’s Manual” 

(Wong et al., 2013). 

 

3.3.2 Load-Slip Relations 

In VecTor2, the load-slip behaviour of the connectors is approximated by a piece-wise linear 

curve. An example of this approximation is shown in Figure 3-6, in which the real load-slip 

behaviour of screw connectors tested by Persaud and Synmons (2006) was approximated by 

three line segments. The piece-wise curve is defined by four reference points connected with 

straight lines. By default, VecTor2 treats the origin (0,0) as one of the reference points and the 

remaining three points are manually input by users. It should be noted that the load-slip relation 

must be first converted to the stress-slip domain simply by dividing the force by the tributary 

area of the contact element. The user-interface for defining the stress-slip behaviour of the 

contact element is presented in Figure 3-7. 
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Figure 3-6 Multi-linear approximation (Persaud and Synmons, 2006) 

 

Figure 3-7 Bond definition user-interface 

 

3.4 Failure Criteria Formulation 

Since wood elements in VecTor2 are modelled as a fixed-orthotropic material subjected to bi-

axial stress, three failure criteria may be applicable to the scenario, including the Tsai-Azzi 

criterion (1966), the Norris criterion (1962), and the Hashin criterion (1980). 
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The Tsai-Azzi criterion takes into account the difference in uniaxial tensile and compressive 

strengths, and is as follows: 

 
𝜎𝐿

2

𝑓𝐿
2 −

𝜎𝐿𝜎𝑇

𝑓𝐿
2 +

𝜎𝑇
2

𝑓𝑇
2 +

𝜏𝐿𝑇
2

𝑓𝐿𝑇
2 = 1 (3-14) 

where 𝑓𝑇 , 𝑓𝐿 , and 𝑓𝐿𝑇  are the uniaxial and shearing strengths relative to the corresponding 

directions. 

The Norris criterion is similar to the Tsai-Azzi criterion except that the interaction term is 

nonbiased towards directions. The Norris criterion is given as: 

 
𝜎𝐿

2

𝑓𝐿
2 −

𝜎𝐿𝜎𝑇

𝑓𝐿𝑓𝑇
+

𝜎𝑇
2

𝑓𝑇
2 +

𝜏𝐿𝑇
2

𝑓𝐿𝑇
2 = 1 (3-15) 

The Hashin criterion characterizes wood failure by four scenarios, including: 

Fibre tension mode: 

 
𝜎𝐿

2

𝑓𝐿,𝑡
2 +

𝜏𝐿𝑇
2

𝑓𝐿,𝑣
2 = 1 (3-16) 

Fibre compression mode: 

 
𝜎𝐿

 

𝑓𝐿,𝑐
 = 1 (3-17) 

Matrix tension mode: 

 
𝜎𝑇

2

𝑓𝑇,𝑡
2 +

𝜏𝐿𝑇
2

𝑓𝐿,𝑣
2 = 1 (3-18) 

Matrix compression mode: 

 
𝜎𝑇

2

4𝑓𝑇,𝑣
2 + [(

𝑓𝑇,𝑐

2𝑓𝑇,𝑣
)

2

− 1]
𝜎𝑇

2

𝑓𝑇,𝑐
2 +

𝜏𝐿𝑇
2

𝑓𝐿,𝑣
2 = 1 (3-19) 
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where 𝑓𝐿,𝑡 , 𝑓𝐿,𝑐 , 𝑓𝑇,𝑡 , 𝑓𝑇,𝑐 , 𝑓𝐿,𝑣  , and 𝑓𝑇,𝑣  are, respectively, the strengths related to longitudinal 

tension and compression, transverse tension and compression, and longitudinal and transverse 

shear. 

The Hashin criterion has been adopted into VecTor2 to account for different types of failure 

modes. For flexure-critical timber beams, failures typically occur at the bottom of the beam, 

where the wood fibre is essentially subjected to uniaxial tensile stress. In that scenario, both 

Equation 3-18 and Equation 3-19 will be equal to zero on the left side, and the matrix failure 

mode will never govern the ultimate failure. Moreover, the second term of Equation 3-16 is zero, 

and therefore the Hashin criterion is reduced to uniaxial failure criterion which is the same as the 

Rankine Criterion.  

For shear-critical conditions, failures are more likely governed by a combination of shear stress 

and axial stress, and the matrix failure modes become more prominent. However, it should also 

be pointed out that the transverse tensile strength and the transverse shear strength are the less 

commonly known mechanical properties of wood; their values are typically not available in the 

literature.  
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Chapter 4 Modelling of Plain Timber Specimens 

 

4.1 Introduction 

The objective of this chapter is to verify the adequacy of the constitutive models and the failure 

criteria implemented for timber. The verification study was carried out by modelling in VecTor2 

the timber beams tested by Gentile (2000), followed by a detailed comparison between the 

analytical and the experimental results.  

 

4.2 Gentile (2000)  

4.2.1 Specimen Details 

The experiment series conducted by Gentile (2000), chosen for the verification study, consisted 

of twenty-two half-scale timber beams and four full-scale timber beams tested to failure. All 

specimens were simply supported and tested under four-point bending. Among the specimens, 

fifteen of the half-scale specimens and three of the full-scale specimens were reinforced with 

glass fibre-reinforced polymer (GFRP) bars, with the remaining plain timber beams serving as 

control specimens. Epoxy resin was used to bond the GFRP bars to the timber, creating a perfect 

bond condition.  

For all the half-scale specimens, the cross sections were 100 x 300 mm with a load span of 600 

mm and a support span of 4000 mm. Lateral bracing was provided in the middle of each shear 

span to prevent lateral-torsional instability. The GFRP bars were installed in the grooves that 

were cut 30 mm above the bottom fibres into the sides of the specimens. The grooves had a 

constant depth of 25 mm, and varying width to accommodate different numbers of GFRP bars. A 

schematic of the test setup and the cross sections of the half-scale specimens are shown in Figure 

4-1 and 4-2, respectively. 

For the four full-scale specimens, the cross sections were 200 x 600 mm with a load span of 1,200 

mm, and a support span of 10 metres. Lateral bracing was provided at the loading points to 
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prevent lateral-torsional instability. Two of the beams had grooves cut into the bottom face of 

the beams and one of the beams had grooves cut into the sides of the beam. The grooves had a 

depth and width of 20 x 20 mm, 15 x 15 mm, and 40 x 20 mm for Beam FS-1, FS-2, and FS-3, 

respectively. Due to the available lengths of the GFRP bars used, only the central 6.0 m was 

reinforced. A schematic of the test setup and the configuration of the half-scale specimens are 

shown in Figure 4-3 and 4-4, respectively.  

 

Figure 4-1 Test configuration for half-scale beams (Gentile, 2000) 

Figure 4-2 Cross sections of half-scale reinforced beams (Gentile, 2000) 
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Figure 4-3 Test configuration for full-scale beams (Gentile, 2000) 

Figure 4-3 

 

 

Figure 4-4 Configuration of full-scale reinforced beams (Gentile, 2000) 
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4.2.2 Materials 

The timber used in the experiments was structural grade Douglas Fir with an allowable bending 

stress of 11 MPa (1600 psi) as specified by AASHTO (1996). New timber was used to prepare the 

half-scale beams, while the full-scale beams were taken from an existing timber bridge in 

Manitoba, which had been in service for 40 years at the time of the experiments.  

Two types of GFRP bars were used for flexural strengthening of the test beams. The half-scale 

beams were reinforced by Rotaflex rods, produced by Rotafix Ltd, UK, while C-Bar, produced by 

Marshall Industries Composites Inc, USA, was used to reinforce the full-scale beams. The Rotaflex 

rods had a 5 mm diameter, a nominal tensile strength of 1800 MPa, and a modulus of elasticity 

of 56 GPa. The C-Bar used had diameters of 10 mm and 13 mm, a nominal tensile strength of 700 

MPa, and a modulus of elasticity of 42 GPa. The stress-strain relationships for the two GFRP bars 

are presented in Figure 4-5. 

 

Figure 4-5 Stress-strain relationships for GFRP (Gentile, 2000) 
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4.2.3 Modelling Details 

Both the plain timber specimens and the reinforced timber specimens were modelled in VecTor2 

using the auto-meshing function, with only half of the span modelled due to symmetry. 

Rectangular membrane elements were used to model the timber, while truss elements were 

used to model the GFRP bars. Perfect bonding was assumed between the GFRP bars and the 

timber. The finite-element models created for both the half-scale beams and the full-scale beams 

are presented in Figure 4-6 through Figure 4-12. A summary of the finite element models is given 

in Table 4-1. 

The modulus of elasticity (MOE) and the modulus of rupture (MOR) in the longitudinal direction 

were reported by Gentile (2000); these values were used as the input mechanical properties of 

timber. The modulus of rupture may be used as the tensile strength parallel to the grain, although 

it is not a true stress because the formula by which it is calculated is valid only within the elastic 

range.  

It was impossible to perform FE analysis for the timber beams with only the MOE and the MOR 

available, since there were other inputs required by VecTor2, namely the tensile strength 

perpendicular to the grain, the compressive strength parallel to the grain, the compressive 

strength perpendicular to the grain, and the shear strength. Representative values may be found 

in Chapter 4 of the US Wood Handbook. However, these values were obtained from small defect-

free samples which may not be appropriate to use for full-scale structural grade timber. 

To make the subsequent FE analysis possible, reasonable assumptions were made as follows: The 

magnitude of the longitudinal compressive strength was taken as equal to that of the longitudinal 

tensile strength. The tensile strength perpendicular to the grain and the shear strength were 

assumed to be one-tenth of the tensile strength parallel to the grain, while the transverse 

compressive strength was assumed to be 20% of that of the longitudinal counterpart. The full 

explanation for the assumptions made here is given in Section 5.3.2 of this thesis. Lastly, the 

elastic modulus perpendicular to the grain orientation was calculated as per the relations 

discussed in Chapter 2 (Bodig 1982). A summary of the input parameters and the reinforcement 

details is shown in Table 4-2 and Table 4-3, respectively. 
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Figure 4-6 Half-scale plain timber beams 

 

Figure 4-7 Half-scale beams with GFRP reinforcement  

 

Figure 4-8 Full-scale beams with GFRP reinforcement at the bottom (FS1 and FS2) 

 

Figure 4-9 Full-scale beam with GFRP reinforcement at the sides (FS3) 

 

Figure 4-10 Full-scale plain timber beam (FS4) 
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Table 4-1 Summary of the models 

Scale Half Full 

Mesh Size (width x height) 25 x 25 mm 25 x 30 mm 

Nodes 1203 4451 

Rectangles 1096 4216 

Truss NA / 90 NA / 120 

 

Table 4-2 Summary of input parameters 

Beam ID 

MOE 
Para. to 

Grain 
(MPa) 

Tensile 
Para. to 

Grain 
(MPa) 

Compressive 
Para. to 

Grain 
(MPa) 

Tensile 
Perp. to 

Grain 
(MPa) 

Compressive 
Perp. to 

Grain 
(MPa) 

Shear 
Long. to 

Tran. 
(MPa) 

A1 10257 21.2 21.2 2.1 4.2 2.1 

A2 10855 43.3 43.3 4.3 8.7 4.3 

B1 8568 21.6 21.6 2.2 4.3 2.2 

C1 10197 37.0 37.0 3.7 7.4 3.7 

D1 12491 52.8 52.8 5.3 10.6 5.3 

D2* 11189 36.0 36.0 3.6 7.2 3.6 

F1 6999 18.8 18.8 1.9 3.8 1.9 

F2 6039 23.0 23.0 2.3 4.6 2.3 

G1 14662 43.7 43.7 4.4 8.7 4.4 

G2 10969 44.2 44.2 4.4 8.8 4.4 

H1 9654 25.0 25.0 2.5 5.0 2.5 

H2 9327 32.0 32.0 3.2 6.4 3.2 

I1 14724 61.3 61.3 6.1 12.3 6.1 

I2 13140 58.7 58.7 5.9 11.7 5.9 

J1 7602 19.8 19.8 2.0 4.0 2.0 

K1 7450 37.2 37.2 3.7 7.4 3.7 

L1 7274 27.1 27.1 2.7 5.4 2.7 

L2 7598 34.1 34.1 3.4 6.8 3.4 

FS-1 10506 44.3 44.3 4.4 8.9 4.4 

FS-2 13276 55.3 55.3 5.5 11.1 5.5 

FS-3 8445 36.1 36.1 3.6 7.2 3.6 

FS-4 11870 24.8 24.8 2.5 5.0 2.5 
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Table 4-3 Reinforcement details 

Beam 
ID 

Scale 
Diam. 

of GFRP 
(mm) 

# of 
GFRP 

Area of 
GFRP 

(mm^2) 

% of 
GFRP 

Fy 
(MPa) 

Fu 
(MPa) 

E (MPa) 

A1 Half - - - - - - - 

A2 Half 5 12 246 0.82 1800 1800 56000 

B1 Half - - - - - - - 

C1 Half - - - - - - - 

D1 Half 5 4 82 0.27 1800 1800 56000 

D2 Half 5 4 82 0.27 1800 1800 56000 

F1 Half - - - - - - - 

F2 Half 5 4 82 0.27 1800 1800 56000 

G1 Half - - - - - - - 

G2 Half 5 12 246 0.82 1800 1800 56000 

H1 Half - - - - - - - 

H2 Half 5 6 123 0.41 1800 1800 56000 

I1 Half 5 6 123 0.41 1800 1800 56000 

I2 Half 5 12 246 0.82 1800 1800 56000 

J1 Half - - - - - - - 

K1 Half 5 6 123 0.41 1800 1800 56000 

L1 Half 5 6 123 0.41 1800 1800 56000 

L2 Half 5 12 246 0.82 1800 1800 56000 

FS-1 Full 13 4 504 0.42 700 700 42000 

FS-2 Full 10 4 312 0.26 700 700 42000 

FS-3 Full 13 4 504 0.42 700 700 42000 

FS-4 Full - - - - - - - 

 

 

 

 

 

 



35 
 

4.2.4 Modelling Results 

Shown in Figure 4-13 are the comparisons between the VecTor2 simulation results and the 

experimental results, presented as the red dotted line and black solid line, respectively. In general, 

VecTor2 was capable of predicting the pre-peak global load-deflection responses and the global 

stiffness with sufficient accuracy. 

The post-peak load-deflection response of the reinforced specimens was also reasonably well 

captured by VecTor2. In general, the reinforced specimens exhibited more post-peak 

displacement than those without reinforcement. Specimen F2, with a modulus of elasticity (MOE) 

of 6039 MPa and a modulus of rupture (MOR) of 23 MPa, exhibited a smooth and progressive 

post-peak response with only 0.27% reinforcement. On the contrary, Specimen D1, while having 

the same amount of reinforcement and being approximately two times stronger and stiffer than 

Specimen F2, experienced a brittle failure as the applied load and the stiffness dropped rapidly 

once the maximum force was reached. Specimen I2 had a reinforcement ratio of 0.82%, and 

demonstrated an improved post-peak response than that of Specimen D1. Based on the above 

observations, it may be concluded that the amount of post-peak response depended not only on 

the reinforcement ratio, but also the quality of the timber. 

Regarding the failure modes, tension failure was predicted by VecTor2 in the constant moment 

region for all specimens; whereas, as per Gentile (2000), the failure modes of the specimens 

included tension failure, compression failure, and flexural-shear failure which was only found in 

three of the reinforced specimens. Due to the lack of information, the specimens that had 

flexural-shear failures were excluded from the analysis. All plain timber beams failed in brittle 

tension with no signs of crushing in compression zone, which was in agreement with the VecTor2 

predictions. While all the reinforced specimens initially developed tensile cracks in the constant 

moment region, half of those experienced ductile compression failure due to crushing of wood 

fibre in the top face. Unfortunately, Gentile (2000) did not identify the failure modes of individual 

specimen and therefore it was impossible to proceed any further with the analysis of failure 

modes. Nevertheless, it was believed that VecTor2 was unable to predict the ductile compression 

failures for two possible reasons as follows: 1. The true compressive strength of timber was not 
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reported in the original literature and was assumed to have the same magnitude as the tensile 

strength; 2. The presence of GFRP bars hindered the propagation of tension-initiated cracks, 

leading to a much more improved post-cracking tensile response of timber. Although the 

currently adopted constitutive model included a simple linear softening branch in tension, the 

appropriateness of it was not validated experimentally.  

Although the perfect bonding assumption agreed fairly well with the experimental observations, 

there were some localized debonding of GFRP bars adjacent to tensile cracks. None of the failures 

were caused by debonding or delamination of the reinforcement; in the case of timber beams 

externally reinforced with FRP sheets or strips, as has been reported by other researchers (Dorey 

and Cheng 1996, Hernandez et al. 1997, and Bakoss et al. 1999), debonding or delamination of 

the reinforcement was found to be crucial to the ultimate failures. 

Table 4-4 presented the ultimate loads predicted by VecTor2, which agreed well with the 

experimental measurements. The only exception was Specimen D2, in which the failure occurred 

outside of the constant moment region, causing an underestimation of the modulus of elasticity 

(MOE).  

 

4.3 Conclusions 

Based on the verification studies performed in this chapter, it was found that the constitutive 

models adopted, and the assumptions made for the unknown mechanical properties of wood, 

were appropriate in general for flexure-critical conditions. Due to the lack of information on 

specimen material properties, VecTor2 was unable to capture the compression failures observed 

in some of the reinforced specimens. Nevertheless, VecTor2 was able to predict the global 

stiffness, the failure loads, and the initial cracks initiated by tension with sufficient accuracy. 

Timber beams, when sufficiently reinforced, can have a higher tensile strength and improved 

post-peak response than plain timber beams. Further research effort should be undertaken to 

better understand the interaction between timber and FRP reinforcement, and to quantify the 

influence of reinforcement on the post-peak tensile response of wood. There is also merit in 
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developing a more realistic constitutive model which can ultimately improve the post-peak FE 

predictions. 
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(a) Specimen A1 

 

(b) Specimen A2 

Figure 4-11 VecTor2 load-deflection responses 
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(c) Specimen B1 

 

(d) Specimen C1 

Figure 4-11 VecTor2 load-deflection responses (continued) 
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(e) Specimen D1 

 

(f) Specimen D2 

Figure 4-11 VecTor2 load-deflection responses (continued) 
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(g) Specimen F1 

 

(h) Specimen F2 

Figure 4-11 VecTor2 load-deflection responses (continued) 
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(i) Specimen G1 

 

(j) Specimen G2 

Figure 4-11 VecTor2 load-deflection responses (continued) 
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(k) Specimen H1 

 

(l) Specimen H2 

Figure 4-11 VecTor2 load-deflection responses (continued) 
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(m) Specimen I1 

 

(n) Specimen I2 

Figure 4-11 VecTor2 load-deflection responses (continued) 
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(o) Specimen J1 

 

(p) Specimen K1 

Figure 4-11 VecTor2 load-deflection responses (continued) 
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(q) Specimen L1 

 

(r) Specimen L2 

Figure 4-11 VecTor2 load-deflection responses (continued) 
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(s) Specimen FS-1 

 

(t) Specimen FS-2 

Figure 4-11 VecTor2 load-deflection responses (continued) 
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(u) Specimen FS-3 

 

(v) Specimen FS-4 

Figure 4-11 VecTor2 load-deflection responses (continued) 
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Table 4-4 Summary of ultimate loads 

Beam ID 
Pu (Exp.) 

(kN) 
Pu (VT2) 

 (kN) 
Pu (VT2)/ 
Pu (Exp.) 

A1 36.9 34.6 0.94 

A2 75.8 82.0 1.08 

B1 37.5 35.8 0.95 

C1 64.7 63.0 0.97 

D1 92.6 95.2 1.03 

D2 85.7 60.0 0.70 

F1 32.5 31.0 0.95 

F2 40.0 40.0 1.00 

G1 76.5 72.2 0.94 

G2 77.4 85.4 1.10 

H1 43.5 41.6 0.96 

H2 55.9 58.4 1.04 

I1 107.5 111.0 1.03 

I2 103.0 90.0 0.87 

J1 34.4 32.6 0.95 

K1 65.1 68.2 1.05 

L1 47.2 50.6 1.07 

L2 59.6 69.0 1.16 

FS-1 236.0 243.0 1.03 

FS-2 296.0 298.6 1.01 

FS-3 191.0 212.4 1.11 

FS-4 132.0 126.4 0.96 

  Mean 1.00 

  Stand. Deviation 0.10 

  COV 9.57% 
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Chapter 5 Modelling of Timber-Concrete Composite Beams 

 

5.1 Introduction 

In Chapter 4, VecTor2’s capability of modelling the behaviour of plain timber beams was 

examined. This chapter builds on the successful modelling results from Chapter 4, and is devoted 

to the numerical modelling of timber-concrete composite (TCC) beams subjected to short-term 

monotonic loadings. A series of experimental and numerical corroborations were performed and 

the results are discussed.  

The experiments selected for the verification studies are briefly described while additional details 

may be found in the original literature as referenced in this thesis. In what follows, the description 

of the finite element models created for the corresponding specimens are given, along with a 

detailed comparison between the experimental and the numerical results. 

 

5.2 Model Description 

Despite the fact that the experiments performed by different researchers varied considerably in 

terms of dimensions, load configurations, mechanical properties, materials, and the types of 

shear connectors, all the finite element models created in this verification studies share the 

following similarities: 

1. All models consist of two basic elements: the membrane elements and the contact 

elements. The membrane elements were used to model the timber and the concrete 

components while the contact elements were used to represent the shear connectors. 

2. Bearing plates were introduced to all the models to mitigate high local stress for the 

elements directly in contact with the supports and the loading jacks. The bearing plates 

were also modelled with membrane elements. 

3. A number of the specimens had interlayers (e.g. particle board) between the concrete 

and the timber members. Such interlayers were treated as an integral part of the 

underlying timber members, and were assumed to have the same mechanical properties. 
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It is possible that this simplification can result in an overestimation of the global stiffness 

as the interlayers are likely softer than the timber member. Moreover, the presence of 

interlayer reduces the penetration depth of the shear connectors into the timber 

members, which can cause a reduction in the stiffness and load-carrying capacity of the 

shear connectors. 

A sample FE model with an exaggerated span-to-depth ratio is presented in Figure 5-1. This 

general model represents a TCC beam subjected to four-point bending. Due to symmetry, only 

half of the beam is modelled. For the purpose of illustration, the model has a coarse mesh and 

includes all the possible components as discussed, with the concrete, the timber, and the 

interlayer components shaded in grey, brown, and yellow, respectively. The green and blue 

elements represent the bearing plates. The red line between the concrete and the interlayer 

depicts the smeared contact elements, representing continuous shear connectors. Alternatively, 

the shear connectors may be modelled as discrete as shown in Figure 5-2.  

 

Figure 5-1 Sample model with smeared shear connectors 

 



52 
 

 

Figure 5-2 Sample model with discrete shear connectors 

 

5.3 Model Inputs 

5.3.1 Concrete 

While VecTor2 has a number of built-in advanced material and behavioural models implemented 

for concrete, only the default models were used for the verification studies. As per the published 

literature, the global failure of timber-concrete composite beams was rarely governed by the 

concrete component; therefore, there was no need to use the advanced models which were 

implemented for specific case scenarios. The default concrete models in VecTor2 are tabulated 

in Table 5-1. 

A screenshot of the VecTor2 concrete material definition interface is shown in Figure 5-3. Two 

input parameters are required as a minimum for concrete, including thickness (mm) and concrete 

cylinder compressive strength f’c (MPa). Unless otherwise specified, all other material properties 

set to zero by default are computed as per Table 5-2.  
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Table 5-1 Default concrete models 

Concrete Models 

Compression Pre-
Peak 

Hognestad 
(Parabola) 

Dilation Variable-Kupfer 

Compression Post-
Peak 

Modified Park-Kent Cracking Criterion 
Mohr-Coulomb 

(Stress) 

Compression 
Softening 

Vecchio 1992-A 
Crack Stress 
Calculation 

Basic (DSFM/MCFT) 

Tension Stiffening 
Modified Bentz 

2003 
Crack Width Check 

Agg/2.5 Max Crack 
Width 

Tension Softening Bilinear 
Crack Slip 

Calculation 
Walraven 

FRC Tension SDEM-Monotonic 
Creep and 
Relaxation 

Not Considered 

Confined Strength Kupfer / Richart 
Hysterectic 
Response 

Nonlinear w/ Plastic 
offsets 

 

 

Figure 5-3 Concrete definition interface 
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Table 5-2 Concrete properties 

Concrete Properties 

Thickness (mm) user input 
 

  

  user input Max. agg. size (mm) 20 

    Density  2400 

    Kc (mm2/s)  1.2 

    Sx (mm) 1000 

  0.15 Sy (mm) 1000 

 

5.3.2 Timber 

Owing to the orthotropic nature of wood, the required input parameters for timber are quite 

extensive. A screenshot of the VecTor2 timber material definition interface is presented in Figure 

5-4. The majority of these required inputs were not available from the original literature, 

including the longitudinal compressive strength, the transverse compressive and tensile strength, 

and the shear strength, as well as the Poisson’s ratios. Representative values may be found in 

Chapter 4 of the US Wood handbook titled “Wood handbook – Wood as an engineering material” 

which was published by Green et al. (1999). However, as pointed out by the authors, values 

reported in the handbook were obtained from small defect-free wood pieces. Therefore, the 

appropriateness of these properties to represent full-scale structural timber is questionable.  

The longitudinal tensile strength of the specimens, on the other hand, was reported by most of 

the authors. The source of these values was typically from the manufacturers’ specifications or, 

occasionally, from regional design guidelines such as the Eurocode. These values are inherently 

conservative as they are intended for practical use by design engineers; use of these values in 

the FE models likely results in an early termination of the analysis once the longitudinal tensile 

strength of wood is reached.  

Based on the aforementioned circumstances and the limited availability of data, a number of 

assumptions and simplifications were adopted to make the subsequent validations possible, 

including the following: 

1.8 + 0.0075 ∙ 𝑓𝑐
′ 

𝝂𝒐  

𝑬𝒄 (MPa) 3320√𝑓𝑐
′ + 6900 

𝒇𝒄
′  (MPa) 

𝒇𝒕
′  (MPa) 0.33√𝑓𝑐

′ 

𝜺𝒐 (MPa) 

10 × 10−6  𝑪𝒄 (/℃)  
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1. The published longitudinal tensile strength was used as a starting point for all the FE 

models. However, in case of early termination of the analysis, the longitudinal tensile 

strength was progressively increased to ensure that a complete global load-deflection 

response was replicated.  

2. Based on the experimental observation as discussed in Chapter 4 of this thesis, the 

predominant failure mode of plain timber beams is through tensile failure of the bottom 

fibre, typically initiated near knots or finger-joints. The implication of this experimental 

observation is that the longitudinal compressive strength is likely as strong as the 

longitudinal tensile strength, if not stronger. Therefore, unless explicitly stated in the 

literature, the magnitude of the longitudinal compressive strength was taken as equal to 

that of the longitudinal tensile strength.   

3. The transverse tensile strength was assumed to be 10% of the longitudinal tensile 

strength while the transverse compressive strength was taken as 20% of the longitudinal 

compressive strength. These assumption are largely consistent with the values published 

in the US Wood handbook.  

4. Although the US Wood handbook suggests that the shear strength parallel to the grain 

may be taken as 20 to 25% of the longitudinal compressive strength, 10% was adopted in 

the FE models to account for the fact that the timber used in the experiments were 

engineered wood products such as laminated-veneer lumber (LVL), glued-laminated 

timber (glulam), and cross-laminated timber (CLT). These engineered wood products 

contain not only natural defects but also artificial defects such as finger-joints or 

inadequate glue between the layers. In fact, rolling shear failure is a common type of 

failure found in CLT. 

5. As density and Poisson’s ratios hardly influence the numerical results, these values were 

taken directly from the US Wood handbook.  

6. The transverse Young’s modulus was taken as one twentieth of the longitudinal Young’s 

modulus as per the relations proposed by Bodig (1982). Refer to Section 2.2 of this thesis 

for additional information. 
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By adopting these assumptions and simplifications, the minimum required input parameters for 

timber were reduced to three: the thickness (mm), the longitudinal tensile strength (MPa), and 

the Young’s modulus parallel to the grain. 

 

Figure 5-4 Wood definition interface 

 

5.3.3 Shear Connectors 

The load-slip relationship of the shear connectors is used as an input in VecTor2. The load-slip 

relationship is approximated by a piece-wise curve as discussed in Section 3.3.2 of this thesis, and 

must be converted to stress-slip format by converting the force to an equivalent stress as per 

Equation 5-1. A screenshot of the VecTor2 contact element definition interface is given in Figure 

5-5. Note that the “Bonded Surface Area, Ao” is the total contact area per meter length, and is 

taken as the thickness of timber (mm) multiplied by 1000 (mm/m). 
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 𝜎 = 𝐹/𝐴 (5-1) 

where 𝐹 (𝑁) is the force per shear connector and 𝐴 (mm2) is the area of the contact element(s) 

associated with each shear connector. 

 

Figure 5-5 Contact element definition interface 

 

5.4 Validation 

A total of six experiment series was included in this verification study. These series were 

intentionally selected to investigate VecTor2’s applicability under various conditions. 

Nevertheless, the modelling approach was similar among these experiments and the general FE 

model introduced in Section 5.2 was applied consistently.  
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5.4.1 Persaud and Symons (2006) 

A full-scale timber-concrete composite (TCC) floor slab was constructed and tested under three-

point bending to failure at the University of Cambridge (Persaud and Symons, 2006). The 

objective of this experiment was to propose a practical system that could be quickly constructed 

on site with readily available components. The proposed system used ordinary zinc plated steel 

coach screws as the shear connectors and a thin ribbed steel decking system to act as a 

permanent formwork for the cast-in-place concrete floor slab. Details of the proposed system 

are presented in Figure 5-6. As can be observed, the spacing of the shear connectors was dictated 

by spacing of the ribs. The out-of-plane thicknesses of the concrete slab and the timber beam 

were 2000 mm and 100 mm, respectively. 

 
 

Figure 5-6 Details of the proposed system (Persaud and Symons, 2006) 

The push-out test specimen had a similar configuration as the proposed full-scale specimen and 

is shown in Figure 5-6. The concrete slab was cast on Holorib S280 0.9 mm decking on either side 

of the timber beam and was 1000 mm long and 600 mm wide, while the sandwiched glulam beam 

was 1000 mm long and 140 mm wide. The depth of the concrete slab and the timber beam were 

100 mm and 630 mm, respectively. The results of the push-out test are shown in Figure 5-7, 

together with the adopted load-slip curve. 

As reported by the authors, the concrete slab had an initial tangent stiffness of 36200 MPa and 

a cube compressive strength of 47.7 MPa. Since VecTor2 requires the cylinder compressive 

strength as an input parameter, the 47.7 MPa cube compressive strength was converted to the 

equivalent cylinder compressive strength as per Neville (1975), and is equal to 43.4 MPa. The 

timber beam had a measured Young’s modulus of 12085 MPa and a mean bending strength of 

28 MPa as per the Eurocode. However, the authors estimated the actual failure stress to be as 
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high as 41.7 MPa. A summary of the input parameters is tabulated in Table 5-3. All other required 

inputs for timber were calculated as per Section 5.3.2 of this chapter. 

A TCC beam was created in VecTor2 based on the aforementioned information and the FE model 

is demonstrated in Figure 5-8. Smeared contact elements were used in the model because the 

spacing of the connectors in the full-scale specimen was consistent with that of the push-out test 

specimens. Although the concrete slab did not have a uniform thickness over the depth due to 

the decking profile, a uniform thickness was assumed in the FE model. This simplification is 

reasonable because the loss of concrete area may be compensated by the steel decking. In 

addition, the steel decking can act as confinement and add stiffness to the concrete slab. A 

summary of the FE model is presented in Table 5-4. 

Shown in Figure 5-9 is the experimental load-deflection response versus the predicted load-

deflection response; Figure 5-10 compares the predicted and the experimental load-slip curves 

measured at the beam end. Notice that the dotted lines included in both plots were the analytical 

result predicted by a 2D Abaqus model created by Persaud and Symons, 2006. Further details of 

the Abaqus model can be found in their original paper.  

Overall, the complete load-deflection response was well captured by VecTor2, better than was 

done with Abaqus. A mid-span deflection of 75.6 mm and a failure load of 173.6 kN was predicted 

by VecTor2 while the actual mid-span deflection and the failure load were 74.9 mm and 173 kN, 

respectively. Moreover, VecTor2 predicted tension failure at mid-span, which was consistent 

with the experimental observation that the final collapse of the specimen was initiated in the 

region of a knot in the bottom laminates. An exaggerated deflected shape (5X magnification) of 

the TCC specimen is depicted in Figure 5-11. One major discrepancy between the experimental 

result and the VecTor2 prediction was that VecTor2 predicted concrete cracking near the mid 

span directly under the loading jack, whereas in the experiment, no cracking was observed. Such 

discrepancy may be attributed to the confining effect of the steel decking which may have 

prevented the concrete slab from cracking. 
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Figure 5-7 Push-out test specimen (Persaud and Symons, 2006) 

Table 5-3 Input Parameters 

 

 

Figure 5-8 VecTor2 model 

Table 5-4 Summary of the FE model 

 

 

f'c (MPa) 43.4 ft (MPa) 42

Ec  (MPa) 36200 Et  (MPa) 12085

t (mm) 2000 G (MPa) 755

t (mm) 160

Concrete Timber

Timber Concrete Connector

1500 300 150

50 X 40 50 X 50 50 X 0

Type

No. of Elements

Mesh Size (width X height) (mm)
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Figure 5-9 Load-deflection plot 

 

Figure 5-10 Load-slip plot 
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Figure 5-11 Deflected shape at collapse 

 

5.4.2 Yeoh (2010) 

Eleven full-scale timber-concrete composite beams were tested at the University of Canterbury 

in New Zealand by Yeoh (2010) as part of his doctoral work. These semi-prefabricated specimens, 

while not as easy to construct as the one tested by Persaud and Symons (2006), utilized 

innovative connection systems. Four connection types were used in these specimens, including 

metal plates pressed onto the timber beams, triangular notches, and small and large rectangular 

notches cut from the timber beams. These connection systems, as presented in Figure 5-12, were 

found to be significantly stiffer and stronger than the plain coach screw connection system. As 

such, a high degree of composite action can be attained with a significantly less amount of shear 

connectors. 

All specimens were loaded in four-point bending as shown in Figure 5-13 and a summary of the 

11 specimens is given in Table 5-5. Note that the values of the modulus of elasticity (MOE) and 

the modulus of rupture (MOR) were taken as 11300 MPa and 33.4 MPa for all specimens; The 

actual MOE of each specimen was not measured by the author, and the MOR was the mean as 

per the manufacturer’s specification. An interlayer of 17 mm thick plywood was installed in 

specimens to act as a permanent formwork for the concrete slab. The cross sections of the 

bending specimens are illustrated in Figure 5-14. 
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Figure 5-12 Variations of connections with and without coach screws: (a) rectangular; (b) 
triangular; and (c) toothed plate connection (Yeoh, 2010) 

 

Figure 5-13 Typical four-point bending test setup (dimensions in mm) (Yeoh, 2010) 

 

Figure 5-14 Typical cross sections of the bending specimens (Yeoh, 2010) 

 



64 
 

Table 5-5 Summary of the Yeoh specimens 

 

All the push-out specimens consisted of two shear connectors, one on each side. As such, discrete 

contact elements were used to model the shear connectors. Figure 5-15 depicts the FE model 

created for Specimens A1 and A2, with only half of the specimen modelled due to symmetry and 

the fine mesh. Note that the locations and the dimensions of the contact elements were 

consistent with the actual specimens. The adopted load-slip relationships for the four connection 

systems are presented in Figure 5-16.  

 

Figure 5-15 FE model for specimens A1 and A2 

 

Beam ID Span (m) Concrete Timber No. Type f'c (MPa)
MOE 

(MPa)

MOR 

(MPa)

A1 8.0 600x65 400x63 6 R150 58.0 11300 33.4

A2 8.0 600x65 400x63 6 R150 58.0 11300 33.4

B1 8.0 600x65 400x63 10 R150 58.0 11300 33.4

B2 8.0 600x65 400x63 10 R150 38.8 11300 33.4

C1 8.0 600x65 400x63 10 T 54.4 11300 33.4

C2 8.0 600x65 400x63 10 T 58.0 11300 33.4

D1 8.0 600x65 400x63 6 R300 54.4 11300 33.4

E1 10.0 600x65 400x63 6 R300 48.2 11300 33.4

E2 10.0 600x65 400x63 6 R300 31.0 11300 33.4

F1 8.0 1200x65 400x126 8 P 54.4 11300 33.4

G1 8.0 1200x65 400x126 10 R150 48.2 11300 33.4

Note: R150 denotes 150 mm retangular notch connection

R300 denotes 300 mm retangular notch connection

T denotes triangular notch connection

P denotes toothed plate connection

Dimensions (mm) Connection Material Properties
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(a) R150 (b) T 

  

(c) R300 (d) P 

Figure 5-16 Load-slip curves (Yeoh, 2010) 

A summary of the numerical results is presented in Table 5-6; the experimental load-deflection 

responses versus the predicted load-deflection responses are shown in Figure 5-17. In general, 

the experimental load-deflection curves and the failure loads were reasonably well predicted by 

VecTor2. Note that Specimen D1 was not loaded to complete destruction. Specimens B1, C1, C2, 

E1, and F1 experienced brittle tension failure while progressive tension failure was found in 

specimen G1. The failure modes of the rest of the specimens were not found in the literature. 

Some degree of post-peak strength recovery was observed in specimens B2 and F1 which was 

not properly captured by VecTor2. 

The stiffness of specimens B1, B2, E1, and E2 were underpredicted by VecTor2. As a natural 

material, wood properties varies considerably. Consequently, the source of error could be solely 
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from the natural variability of modulus of elasticity of wood, which was assumed to be identical 

across all specimens.  

It shall be pointed out that the predicted stiffness of Specimen F1 deviated from the experimental 

result at large loads. In this case, the spacing effect of the shear connectors could be ultimately 

responsible for the deviation. Shown in Figure 5-18 is the arrangement of the shear connectors 

of Specimen F1, and it is evident that the shear connectors were closely spaced near the support. 

Ceccotti et al. (2006) tested two push-out test specimens with variable spacing and found clear 

distinction between the corresponding load-slip curves. Depicted in Figure 5-19 are the specimen 

details together with the experimental results as reported by Cecotti et al. (2006). 

Specimen G1, contrary to the brittle tension failure predicted by VecTor2, exhibited substantial 

post-peak displacement. No signs of connector failure were observed experimentally and the 

unusual plateau resulted from the progressive tension failure in the timber beam.   
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Table 5-6 Summary of results 

 

 

(a) Specimen A1 and A2 

Figure 5-17 Load-deflection plots 

 Beam ID 
 Pu

(kN) 

 Disp. 

(mm) 

 Pu

(kN) 

 Disp. 

(mm) 

 Pu(exp.)/

Pu(VT2) 

 Disp.(exp.)/

Disp.(VT2) 

 A1 87.5 63.9 89.6 77.5 0.98 0.82

 A2 75.1 63.0 89.6 77.5 0.84 0.81

 B1 104.9 63.0 99.8 67.7 1.05 0.93

 B2 98.1 63.6 98.4 67.6 1.00 0.94

 C1 89.7 58.2 101.8 65.4 0.88 0.89

 C2 109.7 66.8 101.8 65.4 1.08 1.02

 E1 79.4 92.2 80.4 96.2 0.99 0.96

 E2 55.9 66.4 79.0 96.9 0.71 0.69

 F1 175.0 89.8 176.4 76.8 0.99 1.17

 G1 201.1 69.2 199.2 67.6 1.01 1.02

0.95 0.93

0.11 0.13

12% 14%Coeff. Variation

 Experimental  VecTor2  Comparison 

 Average 

Stand. Deviation
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(b) Specimen B1 and B2 

 

(c) Specimen C1 and C2 

Figure 5-17 Load-deflection plots (continued) 
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(d) Specimen E1 and E2 

 

(e) Specimen D1, F1, and G1 

Figure 5-17 Load-deflection plots (continued) 
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Figure 5-18 Arrangement of Specimen F1 (Yeoh, 2010) 

 

  

Figure 5-19 Specimen details and result (Cecotti et al., 2006) 

 

5.4.3 Deam et al. (2008) 

Another series of specimens tested at the University of Canterbury was selected for the 

verification studies. A summary of the four full-scale specimens is given in Table 5-7. The 

distinguishing characteristics of this series is that Specimens CS3 and CS4 were prestressed 

with low relaxation 7-wire stranded tendons. 
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Table 5-7 Characteristics of specimens 

 

No analysis was performed for Specimen CS2 since there was no push-out test performed for 

the novel connection system. While it is theoretically possible to model the draped tendon 

profile in Specimen CS4, it is currently impractical to do so because the current version of auto-

meshing functionality of VecTor2 is not applicable to timber-concrete composite structures. In 

order to capture the draped tendon profile, a series of nodes must be created in line with the 

tendon profile and the bounded elements must be either triangular or quadrilateral. As such, 

Specimen CS4 was also excluded from the analysis. 

Shown in Figure 5-20are the cross sections of specimens CS1 and CS3. The specimens were all 

subjected to four-point bending as depicted in Figure 5-21. The modulus of elasticity (MOE) of 

timber was measured to be 12100 MPa while the modulus of rupture (MOR) was 42 MPa as 

per the manufacturer’s design guideline. The mean cylinder compressive strength and Young’s 

modulus of concrete were measured to be 37.9 MPa and 30100 MPa. 

Specimen ID
No. of LVL 

Beams
Connection System

Concrete 

Weight

Prestressing 

Tendon

CS1 1 24 notches with screws Normal None

CS2 1 End bearing bolted saddles Light None

CS3 2 48 notches with screws Normal Straight

CS4 2 24 lag screws Normal Draped
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Figure 5-20 Cross sections of (a) CS1 and (b) CS3 (Deam et al., 2008) 

 

Figure 5-21 Test setup (Deam et al., 2008) 

The plan view of the connector layout of Specimen CS3 is shown in Figure 5-22. The connector 

spacing for Specimen CS1 was similar to that for Specimen CS3. It should be pointed out that 

the push-out test specimens were constructed with timber of 105 mm thickness, whereas 63 

mm thick timber beam was used in the full-scale specimens. Consequently, the load-slip curve 

needs to be adjusted to reflect the change in notch thickness, which, in this case, is dictated by 
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the thickness of timber. A simple linear adjustment was made to the load-slip curve based on 

the ratio of notch thickness. That is, the stiffness and strength of the shear connectors were 

scaled down linearly by a factor of 0.6 (0.6 = 63/105). This adjustment, while it may not be 

accurate, represents a reasonable estimate. The adopted and the adjusted load-slip 

relationships for the shear connectors are presented in Figure 5-23.  

 

Figure 5-22 Connector layout for Specimen CS3 (Deam et al., 2008) 

 

Figure 5-23 Adopted and adjusted load-slip curve (Deam et al., 2008) 

Shown in Figure 5-24 is the FE model created for Specimen CS3. The locations and the lengths of 

the contacts were consistent with the actual specimen. Contact elements were used to reflect 

the bonding condition between the tendon and the timber beam as presented in Figure 5-25. 

Since the tendon was not grouted, the built-in contact element specifically for unbonded bars or 

tendons was applied between the two ends. 
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Figure 5-24 FE model for Specimen CS3 

 

Figure 5-25 Definition of bond between tendon and timber  

Shown in Figure 5-26 are the experimental load-deflection response versus the predicted load-

deflection responses. For Specimen CS1, yielding of the shear connectors was overpredicted 

while the post-yielding stiffness was underpredicted. The accuracy of the predicted response may 

have been improved if the load-slip curve corresponding to the actual notch size was available. 

Nevertheless, the overall load-deflection response was captured with sufficient accuracy.  

The final collapse of Specimen CS1 was caused as by rupturing of the timber beam in the constant 

moment region. The corresponding tensile stress at failure load was around 60 MPa which was 

about 43 % higher than the value prescribed by the manufacturer’s specification.  

Specimen CS3 was not loaded to complete destruction to avoid the potential danger of tendon 

failure. As can be observed, the added tendon had negligible influence on the global stiffness. 
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Figure 5-26 Load-deflection plots for Specimen CS1 and CS3 
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5.4.4 Gerber (2016) 

Eighteen timber-concrete composite panels were tested at the University of British Columbia. 

These panels, unlike typical TCC beams, had uniform thickness over the depth. Nevertheless, the 

observed load-deflection behaviour of this series agreed fairly well with that of the TCC beams 

investigated previously.  

All the specimens were modelled with the same approach described in the previous three 

experiment series (Section 5.4.1 through Section 5.4.3). Therefore, exhaustive modelling details 

are omitted for this series. A summary of the specimen characteristics and the timber 

specifications is given in Table 5-8 and Table 5-9, respectively. Additional details regarding 

configuration of shear connectors and layout of shear connectors can be found in the original 

literature. All specimens were loaded as per the experimental setup presented in Figure 5-27. 

Table 5-8 Specimen characteristics 

 

Table 5-9 Timber specification 

 

Series Material
No. 

Specimens

Specimen 

Thickness 

(mm)

Specimen 

Length 

(mm)

Depth 

Concrete 

(mm)

Depth 

timber

(mm)

Depth 

Interlayer 

(mm)

S1 LSL 2 610 6096 70 89 NA

S2 LVL 2 610 6096 70 89 NA

S3 CLT 2 600 6000 70 99 NA

S4 LSL 2 610 6096 70 89 25

S5 LVL 2 610 6096 70 89 NA

S6 LSL 2 610 6096 70 89 NA

S7 LVL 2 610 6096 70 89 NA

S8 CLT 2 600 6000 70 99 NA

S9 LVL 2 610 6096 70 89 25

Material 
Tensile Strength

(MPa)

Young's Modulus

 (MPa)

LSL 33.3 10685

LVL 37.6 13790

CLT 11.8 9500



77 
 

 

Figure 5-27 Experimental setup for Gerber Specimen 

Particular attention was given to the modelling details of the four panels constructed with cross-

laminated timber (CLT). Typically, CLT consists of an odd number of layers of timber boards 

stacked together in alternating directions; the direction with one extra layer of timber board is 

hereafter referred to as the primary direction whereas the orthogonal direction is denoted as the 

secondary direction. The intent of CLT is to have an improved stiffness in the secondary direction 

at a cost of a reduced stiffness in the primary direction. Consequently, it may be inappropriate to 

model CLT as a whole; the alternating layers must be reflected in the corresponding FE model. 

Shown in Figure 5-28 is the FE model created for Series 2 with the sandwiched layer highlighted 

in yellow. The Young’s modulus parallel to the grain was interchanged with the Young’s modulus 

perpendicular to grain. While the sandwiched layer alone has a considerably reduced strength in 

the primary direction, one must not neglect the influence of the outer layers, which can act as 

confinement to the sandwiched layer. Currently it is impossible to quantify the influence of the 

clamping force exerted on the sandwiched layer. Therefore, all other mechanical properties were 

assumed to remain unchanged. 
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Figure 5-28 FE model for Series 2 

The experimental load-deflection responses versus the predicted load-deflection responses are 

shown in Figure 5-29. In general, the predicted stiffness agrees reasonably well with the 

experimental results. The worst predicted case was Series 2 in which the stiffness was over-

predicted by a margin of 15%. Such a discrepancy was likely caused by the inconsistency between 

the actual modulus of elasticity and the mean modulus of elasticity as suggested by the 

manufacturer. 

 

 

 

(a) Specimen S1 

Figure 5-29 Load-deflection plots 
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(b) Specimen S2 

 

(c) Specimen S3 

Figure 5-29 Load-deflection plots (continued) 
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(d) Specimen S4 

 

(e) Specimen S5 

Figure 5-29 Load-deflection plots (continued) 
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(f) Specimen S6 

 

(g) Specimen S7 

Figure 5-29 Load-deflection plots (continued) 
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(h) Specimen S8 

 

(i) Specimen S9 

Figure 5-29 Load-deflection plots (continued) 
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While the initial stiffness of the CLT specimens was well predicted by VecTor2, the stiffness at 

large loads was overpredicted by 9% on average. This may be attributed to the weaker 

sandwiched layer. According to the literature, it is common practice by the industry to use timber 

boards of lower grade as the inner layers of CLT. Rolling shear failure, a common type of failure 

found in CLT, may also contribute to the deviation in stiffness. As a result of the non-uniform 

distribution of glue strength, this type of failure typically occurs at locations where the shear 

stress demand exceeds the local glue strength. At the onset of rolling shear failure, the applied 

shear stress must be redistributed to the adjacent glue, causing a reduction in the global stiffness. 

Moreover, since the specimens were loaded under displacement control, the stress 

redistribution also gave rise to a series of sudden drops in force observed in the global load-

deflection curves as highlighted in Figure 5-30. Ultimately, rolling shear failure is characterized as 

a local type failure; as long as the stress can find a way to redistribute, the global ultimate failure 

will not be triggered.  

 

Figure 5-30 Close-up of sudden force drops 

Modelling of local rolling shear failure in VecTor2 is theoretically possible yet practically 

impossible. It involves stochastic analysis which requires knowledge of the normal distribution 
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and the space variation of the glue strength.  As such, perfect bonding was assumed in the FE 

models created and the overprediction was within a tolerable range. 

Similar to Specimen G1 tested by Yeoh (2010), a substantial amount of post-peak displacement 

was found in Series 5. No convincing explanation was provided in the literature. While the reason 

for the plateau remains unknown, it is likely caused by yielding of shear connectors combined 

with progressive tension failure of the timber panel. Nevertheless, the load-deflection response 

was well captured up to the peak. 

 

5.4.5 Other Experiment Series 

Two other experiment series used for the verification studies were carried out by van der Linden 

(1999) and Lukaszewska (2009). van der Linden (1999) proposed an analytical model, commonly 

referred to as the “Frozen Shear Model”, based on the results obtained from 30 typical timber-

concrete composite beams. Lukaszewska (2009) investigated the performance of connectors for 

prefabricated timber-concrete beams subjected to short- and long-term bending. 

The specimens were modelled in the same fashion described previously, and reasonably good 

agreement was found in all specimens. As such, the remaining two series are not discuessed in 

detail. Only the experimental setups and the numerical corroboration results are given in this 

section to further demonstrate VecTor2’s ability to reproduce the global load-deflection 

responses. Note that the true tensile strengths of the specimens were not estimated 

progressively, as previously done; instead, large values were assumed in all FE models.  

 

5.4.5.1 van der Linden (1999) 

van der Linden (1999) tested twenty timber-concrete composite beams, which had no interlayers 

separating the timber and the concrete components. Presented in Figure 5-31 and 5-32 were the 

specimen setup and the details of the shear connectors, respectively. The experimental results 

were published for eight of the twenty specimens; the experimental results were compared to 

the VecTor2 results in this section, as demonstrated in Figure 5-33. As per van der Linden (1999), 
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cracking of concrete was found to occur first underneath the loading jacks, with more cracks 

appearing along the span as the applied load increased. VecTor2 was able to predict the cracking 

load and locations accurately. Take Specimen N+S 7 as an example, VecTor2 predicted the first 

cracking underneath the loading jack at the applied load of 14.1 kN per jack, as shown in Figure 

5-34; more cracks were predicted to occur and the crack pattern prediction at 30 kN per jack, as 

shown in Figure 5-35. 

 

Figure 5-31 Experimental setup (van der Linden, 1999) 

 

Figure 5-32 Connector Types (van der Linden, 1999) 
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(a) N+S 3 

 

(b) N+S 4 

Figure 5-33 Load-deflection response 
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(c) N+S 7 

 

(d) N+S 10 

Figure 5-33 Load-deflection response (continued) 
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(e) NAG 1 

 

(f) NAG 3 

Figure 5-33 Load-deflection response (continued) 
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(g) NAG 4 

 

(h) NAG 10 

Figure 5-33 Load-deflection response (continued) 
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Figure 5-34 Crack pattern at 14 kN per jack 

 

Figure 5-35 Crack pattern at 30 kN per jack 

 

5.4.5.2 Lukaszewska (2009) 

Lukaszewska (2009) tested five prefabricated specimens with identical cross sections and two 

types of shear connectors, as depicted in Figure 5-36 and Figure 5-37, respectively. The 

specimens were set up as demonstrated in Figure 5-38. The numerical load-deflection 

predictions, along with the experimental results, are presented in Figure 5-39.  

 

Figure 5-36 Specimen cross section (Lukaszewska, 2009) 
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Figure 5-37 Connector types (a) SP+N; (b) SST + S (Lukaszewska, 2009) 

 

Figure 5-38 Connector Layout (a) Top: Specimen 1 and 5 (SP + N); (b) Middle: Specimen 2 and 
4 (SST + S); (c) Bottom: Specimen 3 (SST + S) (Lukaszewska, 2009) 
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(a) Specimen 1 and 5 

 

(b) Specimen 2 and 4 

Figure 5-39 Load-deflection response (Lukaszewska, 2009) 
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(c) Specimen 3 

Figure 5-39 Load-deflection response continued (Lukaszewska, 2009) 

 

5.5 Sensitivity Analysis 

5.5.1 Mesh Sensitivity 

The precision of a FE analysis is normally heavily dependent on the mesh size. In order to obtain 

stable analysis result, the mesh size must be sufficiently fine. The mesh size of an FE model is 

considered to be adequate if further refinement of the mesh size yields no significant changes to 

the analysis results. 

Figure 5-40 presents the FE two models created both for Specimen CS1 tested by Deam et al. 

(2010). Identical input parameters were used in each model. The model with the finer mesh had 

a grid size of 25 mm by 25 mm which was 3 times finer than that of the model with a “coarse 

mesh”. While the finer mesh is much more demanding in computation effort, the predicted load-

deflection responses are practically identical, as depicted in Figure 5-41. The model with a finer 
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mesh did terminate earlier as a result of higher average stress within the critical element. 

Nevertheless, the model with a “coarse mesh” can be considered as adequately meshed.  

 

 

Figure 5-40 FE models with different mesh size 

 

Figure 5-41 Comparison of predicted load-deflection responses of different mesh size 
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5.5.2 Material Sensitivity 

Since nonlinear material constitutive models were adopted in VecTor2, it is important to examine 

the contribution of the nonlinear models to the global nonlinearity of the composite system. To 

do this, the material responses were set to linear-elastic models such that the shear connectors 

were the only source of nonlinearity of the global system. 

Figure 5-42 compares the numerical results of Specimen CS1 (Deam 2010), with linear and 

nonlinear material models. While the linear material models yielded a slightly stiffer result, the 

difference was rather negligible. A similar comparison was performed for Specimen S7 which was 

discussed in Section 5.4.4 (Gerber 2016); the results are presented in Figure 5-43. This time, the 

linear material models yielded a noticeably stiffer load-deflection response than that of the 

nonlinear material models. The major distinction between the two specimens was the specimen 

configuration. The concrete slab of Specimen S7 had a depth of 70 mm and a total depth of 159 

mm, while Specimen CS1 had the same depth of concrete slab but the total depth of the 

specimen was 448 mm.  

Therefore, for a TCC beam of typical configuration where the depth of concrete slab is relatively 

thin to the total depth of the specimen, the global load-deflection response is generally not 

sensitive to the material nonlinearity. However, for a TCC beam with a higher percentage of 

concrete depth with respect to the total depth, inclusion of the nonlinear material models may 

yield more accurate results.  
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Figure 5-42 Load-deflection responses of Specimen CS1 with linear and nonlinear material 
constitutive models 

 

Figure 5-43 Load-deflection responses of Specimen S7 with linear and nonlinear material 

constitutive models  
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5.6 Conclusions 

After careful examination of VecTor2’s general applicability to various scenarios, the following 

conclusions can be drawn: 

 The assumptions and simplifications made in Section 5.3.2 are appropriate in flexure-

critical conditions. 

 The total-load, secant-stiffness approach is found to be a viable approach for nonlinear 

finite element modelling of plain timber, or timber composite such as timber-FRP or 

timber- concrete composite. 

 Currently, VecTor2 is capable of analysing flexure-critical timber-concrete composite 

beams subjected to short-term monotonic loadings. The load-deflection response of CLT 

specimens can be predicted with reasonable accuracy using the FE model presented in 

Figure 5-29.  

 The true tensile strength, as determined from the failure loads of the beam specimens 

examined, is generally 30% to 50% higher than the mean suggested by the manufacturers. 

 The performance of timber-concrete composite is largely dictated by the load-slip 

relationship of shear connectors. As illustrated by Yeoh (2010), the degree of composite 

action can be close to 100% if the shear connectors are sufficiently stiff. What is also 

observed is that the load-deflection remains fairly linear up to failure. The implication of 

this observation is that high degree of composite action is achieved at a cost of reduced 

global ductility.  

 Shear connectors may be modelled using the smeared or discrete contact elements, 

depending on the connection type and the layout of shear connectors. For shear 

connectors with constant spacing or shear connectors that are installed continuously 

along the span such as the metal plate connectors, the smeared contact elements may be 

a better option, whereas, the discrete contact element is most suitable for connectors 

without uniform spacing. 

 Size matters. The size of shear connectors in full-scale specimens should be consistent 

with that tested in the push-out test. As demonstrated in Deam et al. (2010), the accuracy 
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of the analysis is compromised when the size of shear connectors of push-out test 

specimens do not match with that of the full-scale bending specimens. 

 The spacing effect should be taken into consideration in push-out tests. As demonstrated 

in Figure 5-19, the load-slip relationship can vary considerably as a function of spacing. 

 Generally, the load-deflection response is well predicted by VecTor2 if the ultimate failure 

is caused by either the timber beam rupturing due to high tensile stress in the wood fibre, 

or by crushing of concrete. However, crushing of concrete is a less common type of failure 

for TCC specimens.  

 Although cracking of concrete was predicted by VecTor2 for all the specimens 

investigated in this thesis, it was not experimentally observed in the TCC specimens with 

an interlayer acting as a permanent formwork for the concrete slab. However, van der 

Linden (1999) tested twenty TCC specimens without such interlayers and found visible 

cracks, which first occurred directly underneath the loading jacks. As the applied load 

continued to increase, more cracks were found along the span of the specimens. This 

suggests that the presence of interlayer may have confined or cushioned the bottom 

concrete from cracking.  
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Chapter 6 Conclusions and Recommendations 

 

6.1 Conclusions 

The goal of this thesis was to investigate VecTor2’s potential capability to model timber-concrete 

composite (TCC) structures subjected to short-term loadings. Along the process, the following 

tasks were performed: 

1. Implementation of appropriate wood constitutive model to describe the nonlinear 

behaviour of wood. 

2. Verification of the wood constitutive models by modelling plain and reinforced timber 

beams subjected to short-term monotonic flexure. 

3. Modelling of TCC beams subjected to short-term monotonic flexure, with variations in 

test setups, specimen configurations, materials, and types of shear connectors. 

With the results obtained from numerical simulations, it is confirmed that VecTor2 can model 

TCC structures with sufficient accuracy. The generic FE models presented in Figure 5-1 and Figure 

5-2 are found to be accurate and versatile, as they can be easily created and modified to deal 

with different case scenarios.  

However, the successful modelling results are limited to flexure-critical situations, where the 

ultimate failure of TCC specimens is governed by brittle tension failure of timber in the bottom 

face. Incomplete information on the material properties of the beam tested prevents 

confirmation of the ability to model other failure modes. 

Lastly, past experimental work on TCC has focused primarily on the development of shear 

connectors, and the TCC performance subjected to short- and long-term monotonic loadings. 

Hence, the numerical corroborations performed in this study are limited to short-term 

monotonic loadings; VecTor2’s capability to perform dynamic analysis of TCC structures is 

uncertain. 
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6.2 Recommendations 

While a wide range of further investigation is possible, some aspects closely related to the scope 

of work of this thesis are recommended for future work, as follows: 

 VecTor2 development: 

The current pre-processor of VecTor2, FormWorks, is not able to auto-mesh a TCC beam. As such, 

a step-by-step guideline is provided in Appendix B to explain the process to manually create a 

TCC model in FormWorks. In order to simplify the model creation process for TCC structures, 

work is required to update the FormWorks auto-meshing source code. 

The post-processor, Augustus, does not read and display any results related to the bond-slip 

elements. Work needs to be devoted to expand the program’s capability in this regard, and 

ultimately to make the program more user-friendly for practical use. 

 Experimental work: 

Future work must be undertaken to investigate the dynamic response of TCC. In the case of 

monotonic loadings, the concrete component is of little concern as it primarily resists 

compression, and the compression rarely surpasses the concrete’s compressive strength. 

However, the concrete slab may become an issue under dynamic loading.  

The global load-deflection response of any TCC system is heavily dependent on yielding of shear 

connectors. In general, shear connectors need to be sufficiently stiff to achieve a high degree of 

composite action, yet sufficiently ductile to contribute to the global ductility of a TCC system. The 

use of concrete notch shear connectors investigated by Yeoh (2010) enabled a high degree of 

composite action up to collapse, at the cost of reduced softening of the global load-deflection 

response.  From the experimental investigation conducted by Gentile (2000), as discussed in 

Chapter 4, it is concluded that FRP reinforcement can be an effective measure to enhance the 

post-peak response of wood in tension. Therefore, it may be worthwhile to incorporate both FRP 

reinforcement and shear connectors of high stiffness within a TCC system, with each serving its 

own purpose. 
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Appendix   Modelling Guideline 

 

This section serves as a step-by-step guideline which aims to explain the VecTor2 modelling 

process for timber-concrete composite beams subjected to short-term monotonic loadings. All 

models are created with the program FormWorks (Wong et al., 2013), a pre-processor developed 

specifically for VecTor2. The current auto-meshing functionality of FormWorks is not compatible 

with timber-concrete composite structures; as such, all models must be manually created using 

the built-in manual-meshing function. A newer version of the auto-meshing function is currently 

under development, which will not only automate the model generation process, but also 

improve the overall computation efficiency. 

 

Step 1   Defining Regions 

The process to manually create a timber-concrete composite beam model in FormWorks can be 

tedious and time-consuming; patterns should always be exploited to simplify the process 

substantially. In order to utilize such patterns, a TCC model should be first broken down into 

multiples regions. Nodes and elements can then be added in batches following the specific 

patterns associated with each region as defined.  

The model created for Specimen CS1 tested by Deam et al. (2008) is used as a comprehensive 

example. More details regarding the experimental setup can be found in Section 5.4.3 of this 

thesis. Shown in Figure 1 is an example of how regions were defined for Specimen CS1. In this 

case, the regions were defined entirely based on the original experimental setup, with each 

region representing a particular material type (i.e. Region 2 representing the timber beam and 

Region 3 representing the shear connectors). This example represents a simple yet feasible 

approach that finds a balance between the computation demand, and simplicity in model 

creation. All other specimens used for the validation studies in Chapter 5 were created following 

the same procedure. 
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Figure 1 Region definition 

 

Step 2   Adding Nodes 

A timber-concrete composite beam model in FormWorks comprises a series of rectangular 

elements which are defined by the four corner nodes. All nodes are added using the “Create 

Nodes” dialog box as presented in Figure 2. 

Specimen CS1 had a total span of 6 meters, and the timber beams supporting the concrete slab 

was 360 mm deep. Only half of the specimen was modelled due to symmetry. It was decided to 

use 50 mm by 40 mm rectangular elements for the timber component; this translates into a total 

of 540 rectangular elements for the timber component, with 60 elements in the horizontal 

direction and nine elements in the vertical direction. As such, there were 10 rows of nodes 

created for the timber component, with each row consisting of 61 horizontal nodes. 

Demonstrated in Figure 3 were the nodes added to the model for Region 1 and Region 2. Shown 

in Figure 4 is a close-up of Figure 3 in the bottom left corner. Notice that nodes 1 to 6 were 

created for Region 1, while nodes 8, 9 and 10 were the common nodes shared by both Region 1 

and Region 2 (Figure 4). These three common nodes were excluded when adding nodes for 

Region 1; instead, they were added together with all other nodes in Region 2. Although this may 

interfere with the node pattern in Region 1, it preserved the integrity of the node pattern in 

Region 2. In this case, the amount of nodes in Region 2 was significantly greater than that in 

Region 1, and therefore the priority was given to Region 2. Similarly, the common nodes for 

Region 4 and Region 5 were assigned to Region 4. 
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As a requirement of the contact elements, nodes must be created in pairs with the same 

coordinates at each node location. As such, Region 3 consisted of nodes pairs, including the top 

row of nodes of Region 2, and the bottom row of nodes of Region 4. There were no common 

nodes, and therefore the node patterns of Region 2 and Region 4 were not interrupted. 

Following the aforementioned rules, all nodes were added in 4 batches. Each batch of nodes 

corresponded to a specific region with the only exception being Region 3, where the node pairs 

were located. Further details of how nodes are manually added in FormWorks can be found in 

Section 10.4.3 of the VecTor2 and FormWorks Manual (Wong et al. 2013).  

 

 

Figure 2 Create Nodes dialog box 

 

Figure 3 Nodes added for Region 1 and Region 2 

 

Figure 4 Close-up of Figure 3 (bottom left corner) 
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Step 3   Adding Elements 

The rectangular membrane elements and the contact elements were added to the model using 

the “Create Rectangular Elements” dialog box as shown in Figure 5, and the “Create Interface 

Elements” dialog box shown in Figure 6, respectively. It should be pointed out that while the two 

dialog boxes look similar, the node conventions are different. For more detailed explanation of 

the node conventions and the required inputs for the dialog boxes, refer to Section 10.4.4 of the 

VecTor2 and FormWorks Manual (Wong et al. 2013). As the node pattern integrity was preserved 

for Regions 2, 3, and 4, elements in these regions were easily added, simply by following the 

specific node pattern for each region. For Region 1 and 5, elements were added in two stages 

because the node patterns were interrupted.  Shown in Figure 7 was the model after all elements 

were added, with the rectangular membrane elements shown in white, and the contact elements 

shown in cyan.  

 

Figure 5 Create Rectangular Elements dialog box 

 

Figure 6 Create Interface Elements dialog box 
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Figure 7 FE model with all elements added 

 

Step 4   Defining Material Properties 

Prior to assigning material types, the material and bond properties must be defined in advance. 

The material and bond property definition interface were presented previously as shown in 

Figure 5-3 through Figure 5-5. Refer to Section 5.3 for more details regarding the required 

material inputs. 

Step 5   Assigning Material Types 

After the material properties were defined, material types were then assigned to the designated 

elements using the “Assignment Material Types” dialog box depicted in Figure 8.  

 

Figure 8 Assign Material Types dialog box 

 

 

 



110 
 

STEP 6   Adding Boundary Conditions 

Since only half of Specimen CS1 was modelled, a series of vertical rollers were added to the nodes 

at mid-span; these rollers were introduced to enable the mid-span nodes to deflect freely in the 

vertical direction, yet fixed against any longitudinal movement. The specimen was also simply 

supported at the bearing plate and therefore a vertical roller was provided. It should be pointed 

out that since the model was horizontally restrained at mid-span, the bearing plate should not 

be pinned; doing so may cause local failure of the elements directly above the baseplate. 

However, when the specimen was modelled as a whole as presented in Figure 5-25, one of the 

bearing plates must be fixed against transverse movement, or the global stiffness matrix would 

not be strictly positive-definite, and a unique solution would not be possible.  

 

Step 7   Adding Loads 

Since Specimen CS1 was loaded in a displacement control loading protocol, a downward support 

displacement was applied to the top bearing plate. The completed FE model for Specimen CS1 is 

presented in Figure 9, and the model is now ready for analysis. 

 

Figure 9 Completed FE model for Specimen CS1 
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Step 8   Interpreting Simulation Results 

Augustus, a post-processor for VecTor2, can be used to retrieve the majority of the simulation 

results, such as the load-deflection response, and membrane elements’ stress and strain. 

However, the simulation results with regards to the contact elements need to be extracted 

manually by accessing the text files where all the simulation results at a given load stage are 

stored. 

To generate the load-deflection plot at mid-span, follow the procedures below: 

1. Click the “Element Plot” button (Figure 10). 

2. Move the cursor to the designated element, left click to select (Figure 10).  

3. Click the “X Variable” button and select “Avg Y-Displacement” as x variable for the plot 

(Figure 11). 

4. Click the “Y Variable” button and select “Avg Y Restraint Force” as y variable for the plot 

(Figure 12). 

5. Click the “Produce Plot” button to generate the plot (Figure 13).  

Notice that on the bottom left corner, a “Control Chart” is displayed, which corresponds to the 

load-deflection response at the loading jack. For three-point bending, the “Control Chart” 

corresponds to the mid-span deflection. In the case of Specimen CS1, the specimen was 

subjected to four-point bending and therefore the produced mid-span deflection plot deviated 

from the “Control Chart”. 

Obtaining the load-slip response is a manual process which is time consuming; the user will need 

to manually open each “A2E” file corresponding to a specific load stage through the Text Editor 

(Figure 14), locate the “Bond Element SLIPS & STRESSES” section and then record the slip 

information corresponding to a specific contact element (e.g. the contact element at the beam 

end).  
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Figure 10 Select specific element 

 

Figure 11 Specify X variable 
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Figure 12 Specify Y variable 

 

Figure 13 Generate plot 
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Figure 14 Retrieve the contact element results 

 


