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Abstract.    FormWorks-Plus is a generalized public domain user-friendly preprocessor developed to 
facilitate the process of creating finite element models for structural analysis programs. The lack of a 
graphical user interface in most academic analysis programs forces users to input the structural model 
information into the standard text files, which is a time-consuming and error-prone process. 
FormWorks-Plus enables engineers to conveniently set up the finite element model in a graphical 
environment, eliminating the problems associated with conventional input text files and improving the 
user’s perception of the application. In this paper, a brief overview of the FormWorks-Plus structure is 
presented, followed by a detailed explanation of the main features of the program. In addition, 
demonstration is made of the application of FormWorks-Plus in combination with VecTor programs, 
advanced nonlinear analysis tools for reinforced concrete structures. Finally, aspects relating to the 
modelling and analysis of three case studies are discussed: a reinforced concrete beam-column joint, a 
steel-concrete composite shear wall, and a SFRC shear panel. The unique mixed-type frame-membrane 
modelling procedure implemented in FormWorks-Plus can address the limitations associated with most 
frame type analyses. 
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1. Introduction 

 
As structural analysis software becomes more advanced, and the demands and expectations to 

accurately assess the response of structures increase, more detailed and sophisticated finite element 
models are required. In the past, structural analysis programs usually forced the user to input 
analysis parameters including nodal coordinates, elements, support restraints, applied loads, and 
analysis options manually using text files with specific formats. This was a time consuming and 
frustrating process that required high levels of expertise. Novice users had to spend significant 
amounts of time to become familiar with the naming conventions of different variables and with 
the input format of the files. In addition, it was typically challenging to trace back errors or false 
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input data since the user was not able to visualize the model.  
In recent years, with significant improvements in computer science, especially in the area of 

software application programming for human-computer interaction, new display and interface 
design techniques were developed resulting in Graphical User Interface (GUI) programs. GUIs 
enable the user to interact with the computer through graphical icons, toolbars, buttons, and other 
user-friendly tools. Enhancing the structural analysis software with a GUI allows engineers to 
conveniently set up finite element models in a graphical workspace and facilitates the process of 
selecting the analysis options, thus reducing the possibility of errors and saving time. One of the 
major reasons that some commercial structural software gain wide recognition among engineers is 
that, unlike most academic software, they provide user-friendly GUI in addition to the analysis 
program. A good GUI reduces the software training cost noticeably which can be one to three 
times the cost of the actual software (Bakewell 1993). It also improves the user’s perception of the 
application. Although some academic structural programs have advanced analysis methods and 
can be very reliable, the lack of a good GUI coupled with a complex modelling procedure may 
result in the software being ignored by the potential users; its practical capabilities will not be 
embraced and exploited by the engineering community.  

The VecTor suite of programs was developed at the University of Toronto to analyze a wide 
range of reinforced concrete (RC) structure types. The programs are based on a secant stiffness 
formulation using a total-load iterative approach, and employ a smeared crack procedure. The 
theoretical basis of VecTor programs is the Modified Compression Field Theory (MCFT) (Vecchio 
and Collins 1986) and the Disturbed Stress Field Model (DSFM) (Vecchio 2000). The MCFT and 
DSFM have been shown to be capable of accurately representing the behaviour of RC, particularly 
under shear-critical conditions. Several experimental programs with different types of specimens 
have been undertaken at the University of Toronto and elsewhere to verify the accuracy of the 
programs. In addition, analyzing real-world structures including frames, slabs, shear walls, silos, 
bridges, offshore platforms, crash barriers, and nuclear containment structures have been 
demonstrated the utility of the VecTor programs in determining the complex nonlinear behaviour 
of concrete structures (Selby et al. 1997, Palermo and Vecchio 2002, Vecchio and Shim 2004). 
Although these nonlinear finite element programs are originally designed for analysis of RC 
structures, in recent years their application has been extended to other material types including 
structural steel, masonry and wood.          

A user-friendly GUI is required for the entire suite of VecTor programs if they are to be of 
greater use to design engineers. The lack of a GUI forces users to create the finite element model 
in text files with specific formats which is a challenging and time-consuming process. A 
pre-processor would aid in creating appropriate structural models, inputting and checking data, 
selecting proper analysis parameters, and specifying appropriate loads. In addition, its graphing 
capabilities would allow the user to see the structure from different views, cut various sections and 
permit a wide range of plots to demonstrate the structure shape, material specifications and applied 
loads.  

While most of the available GUIs were developed to model structures for design purposes, 
there are a few which were specifically developed to facilitate the analysis of structures. However, 
none are sufficiently suitable for modelling RC structures in detail to the extent necessary for 
advanced analyses. To fully consider the nonlinear behaviour of RC, a new type of GUI is required 
which provides the user with a wide range of material models and element types which are 
specifically designed for analyzing cracked RC. For example, to consider slip between 
reinforcement and concrete, bond-slip elements are required which serve as a deformable interface 
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between the concrete elements and reinforcement elements. The VecTor programs include two 
types of bond-slip elements: the link element and the contact element. Also in analyzing RC 
structures, there are two common approaches to modelling the reinforcement: either smeared or 
discrete. Each approach is suitable for a particular type of problem; thus, a GUI is required that is 
capable of modelling the reinforcement in both manners. In addition, in recent years there has been 
a substantial interest in modelling repaired RC structures. Several types of repair strategies have 
been developed such as using FRP sheets and steel jacketing. Each method requires different input 
parameters and material models. Also, the repair material can debond from the surface of the 
concrete. To capture this phenomenon and other local behaviours, a more complicated FE model is 
required. A GUI which can facilitate the modelling process of the repaired structures will help 
engineers to save time and reduce the likelihood of errors. 

In this study a new extended version of FormWorks, FormWorks-Plus, was developed which 
gives the user better modelling capabilities and is more user-friendly. In addition, FormWorks-Plus 
is compatible with remaining types of structures and supports a wide range of element and 
material types. This paper intends to first explain the architecture of the program and fundamental 
C++ classes employed, followed by a detailed description of the main features of the program 
including available material and element types, different viewing capabilities, auto-meshing 
feature, and auto-substructuring feature. Finally, to illustrate the application of the program the 
modelling process and analysis results of three case studies are described.  

Both VecTor and FormWorks-Plus are public domain programs and can be downloaded free 
from the VecTor group website (www.civ.utoronto.ca/vector). 

 
 

2. Background 
 
The FormWorks-Plus program was written in the C++ programming language using Microsoft 

Foundation Classes (MFC), and compiled with Microsoft Visual C++ Version 9.0. The MFC 
classes are a set of predefined classes which provide a standard Application Programming 
Interface (API) for development of Windows applications. These classes are based on an 
object-oriented approach which is a method of organizing groups of data and operations in 
different set of objects. MFC objects or objects of classes derived from MFC can be created and 
used to develop Windows applications like GUIs. The member functions of these MFC-based 
classes allow communication with Windows, processing Windows messages, and interaction 
between classes.  

The architecture of the FormWorks-Plus application consists of two main classes known as a 
document and a view. The document is responsible for collecting and processing all the data in the 
application with which the user interacts, while the view is an object that provides different 
methods to display all or part of the data stored in a document. The separation of document and 
view classes enables the application to have multiple views of the same document. 

The document/view structure of FormWorks-Plus contains instances of several major classes: 
CJobData, CStructureData, CLoadData, CAttributeData, and CWMultiPolygon (Fig. 1). Each of 
these classes contains instances of smaller classes or utilizes them in data structures. Additionally, 
the document class (CPr1Doc) contains serialization member functions to save data into memory 
storage. The view class (CPr1View), among other purposes, contains functions for drawing to the 
screen, printing, and interacting with the mouse.  

To display 2D and 3D structures with complex element shapes and geometries, 
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 Orthotropic Laminate 
The Concrete-Ortho Laminate is a combination of a concrete core and wood (or other 

orthotropic material) faceplates. Concrete-wood laminates are commonly used in both floor and 
beam construction. In new floor construction, solid concrete is typically placed on timber floor 
beams or a solid layer of wood. The wood layer functions to replace the cracked concrete-steel 
reinforcement section of a solid concrete slab, and also reduces the need for formwork. Similarly, 
deep beams benefit from concrete-wood composite construction, as wood can help reduce or 
eliminate the high tensile stresses in the concrete. Hence, bridges can also utilize composite 
concrete-timber decks (Gutkowski et al. 2010). As with other laminates, forces must be transferred 
between the concrete and the wood, most likely through shear studs.   

 Shape Memory Alloy Type 1 and Type 2 
Shape Memory Alloy (SMA) materials can be used to replace conventional reinforcing steel 

under seismic loading conditions, and are useful due to the material’s ability to dissipate large 
amounts of energy without excessive permanent deformation. The hysteresis for the conventional 
reinforcing steel includes large strain offsets; after an earthquake, the structure may be left with a 
large residual displacement. SMA materials minimize or eliminate these large strain offsets such 
that after a seismic event, the structure will retain its original shape or the deformations will be 
much smaller than if the conventional reinforcing steel was used.  

The idealized behaviour of SMA, with no strain offsets, is modelled with SMA Type 1. 
Developed at the University of Ottawa, the hysteresis for SMA Type 2 differs from SMA Type 1 in 
that it incorporates strain hardening as well as small strain offsets (Abdulridha et al. 2013). Fig. 6 
shows the stress-strain response of SMA Type 1 and Type 2, where fy is the yield stress, funl is the 
unloading stress, ɛp is the strain offset, ɛr1 and ɛr2 are the reference strains, and ɛm is the maximum 
strain. In the FormWorks-Plus, the input parameters are same as the conventional steel 
reinforcement. 

 
3.1.2 Structural Steel 
Structural Steel is modelled as a linear-elastic material up to the point of yielding, after which 

plastic deformation and strain hardening occur. For the most part, the input parameters in 
FormWorks-Plus are similar to that of Ductile Steel Reinforcement.  

 
3.1.3 Masonry 
Masonry is a composite material consisting of masonry units and mortar joints. Masonry is an 

orthotropic material, due to the geometry and different mechanical properties of the units and 
joints. As with the smeared crack approach for the analysis of cracked concrete, for sufficiently 
large masonry structures, the masonry can be modelled as a continuum with average properties 
where joint failures are smeared across the single finite element (Lourenco 1996). Recently the 
DSFM model was extended to unreinforced masonry structures subjected to monotonic loads. The 
unique feature of the model is that it can analyze the local shear response of the joints by 
modelling their behaviour separately (Facconi et al. 2014). Fig. 5(b) illustrates the local stresses 
for masonry structures in DSFM model. To ensure equilibrium is satisfied, local shear (vhj and vbj) 
and normal stresses (fnhj and fnbj) are required to balance external applied stresses (fx, fy, and vxy). 
In local stresses, the hj and bj subscripts stand for the head joint and bed joint, respectively.      

 
3.1.4 Wood (fixed orthotropic) 
Wood is modelled as a fixed orthotropic material in which the two directions of orthotropy are 
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A graphical user interface for stand-alone and mixed-type modelling… 

description regarding interface elements is provided in the Cyrus User’s Manual (Sadeghian and 
Vecchio 2014). At the conclusion of the process, FormWorks-Plus renumbers node and element 
numbers according to the final sub-models configuration. 

 
3.5 Other features 
 
Many other facilities were implemented in FormWorks-Plus to improve the functionality of the 

program and make the modelling process less tedious and more attractive for engineers. The 
following is a brief description of some of the features. 
 Polar coordinate system was included, greatly facilitating the modelling process of curved 

structures. 
 Window Selection and Pointer Selection features were implemented which make the process of 

selecting nodes, elements, restraints, and loads easier for the user.  
 A summary page and a graph feature were provided for complex load types, giving the user a 

better understanding of the applied loads. 
 An Insert feature was added to the program to import node coordinates, created by a drawing 

software like AutoCAD, from a text file. This option facilitates setting up the finite element 
model for complex geometries and saves much time. 

For a full description of FormWorks-Plus features, refer to Sadeghian (2012).  
 
 

4. Application examples 
 
4.1 Beam-column joint 
 
Shiohara and Kusuhara (2007) conducted a test program to investigate the response of six 

half-scale RC beam-column joints under quasi-statically reversed cyclic load. Specimen A2 was 
selected for modelling and analysis in this section. The primary objective of the study was to 
demonstrate the advantages of using FormWorks-Plus for creating the finite element models. In 
addition, the study intended to compare the analysis results against the experimental results and 
illustrate the improvements in the response of the substructure analysis over the stand-alone 
analysis.  

The test setup and specimen dimensions are illustrated in Fig. 11(a). Also, the cross-sectional 
dimensions and reinforcement layout are illustrated in Fig. 12. The loading conditions considered 
in the experimental program were a constant axial force of 216 kN and a horizontal reversed cyclic 
load in a displacement controlled manner. The loads were applied at the top of the column.  

In this paper, as described in the following, two analysis studies were conducted to compute the 
response of the test specimen.  

Part 1) Stand-Alone Frame Analysis: A Frame model of the entire structure (joint, beams, and 
columns) was created in FormWorks-Plus and analyzed using the frame analysis program, 
VecTor5.  

Part 2) Mixed-Type Analysis: With the help of the Auto-Substructuring feature of 
FormWorks-Plus the joint region of the frame model was replaced with a 2D membrane model in 
VecTor2 and a mixed-type structure analysis was performed using Cyrus. 

Each part of the study is described briefly in the following. For more detailed explanation and 
step by step procedure of the modelling refer to Cyrus User’s Manual (Sadeghian and Vecchio 
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VecTor5 program. Most frame analysis programs, including VecTor5, assume plane section 
remains plane and perfect bond between reinforcement and concrete in their analysis procedure. 
However, according to the experimental results (Fig. 11(b)), the test specimen experienced major 
cracks in the joint panel zone which is considered to be a disturbed region. Also, there were 
noticeable slips between the reinforcement and concrete at the joint region and extension of the left 
beam. 

 
4.1.2 Mixed-type analysis 
To overcome the limitations associated with VecTor5 program and most frame type analyses, 

and capture the peak loads and pinching effect more accurately, the critical part of the structure can 
be modelled using VecTor2 which is a more detailed analysis software. Cyrus can be used to 
combine the two finite element sub-models (VecTor2 and VecTor5) and analyze the entire 
structure. 

To set up the mixed-type model, in the Auto-Substructuring window of FormWorks-Plus the 
frame elements which were located in the critical part of the structure were selected and replaced 
with a 2D membrane sub-model. The program automatically deletes the selected frame elements, 
replaces them with the membrane elements, and adds the interface elements. For beam-column 
subassemblies, usually the critical zone consists of the joint region and an extension of connecting 
members in each direction. The amount of extension can vary depending on how critical is the 
member. For this study, based on the stand-alone frame analysis results and the experimental crack 
pattern presented in Fig. 11(b), the left beam is heavily cracked and thus considered a critical 
member. Accordingly, the joint region was extended 240 mm (80% of the member height) from 
face of the column into the left beam.  For the columns and right beam, since there were no signs 
of major cracking, a minimum extension (around 30% of the member height) was chosen. 

For the 2D membrane sub-model, rectangular and truss elements were used to model concrete 
and longitudinal reinforcement, respectively. The transverse reinforcement was modelled as 
smeared. In addition, link elements were used between rectangular elements and truss elements to 
capture any possible slip between concrete and longitudinal reinforcing bars. In the next step, the 
concrete, reinforcement, and bond material properties were defined using FormWorks-Plus 
user-friendly dialog windows and assigned to the rectangular, truss, and link elements, respectively. 
One of the main parameters in defining bond material is the confinement pressure factor. In 
FormWorks-Plus, for embedded bars, a confinement pressure factor of zero corresponds to the 
unconfined case of splitting failure, while a confinement pressure factor of one corresponds to the 
confined case of pullout failure. The confinement pressure factor was computed to be 0.19 and 
1.00 for the beam extensions zone and joint panel zone, respectively. For more information about 
bond properties and models, refer to VecTor2 User’s Manual (Wong et al. 2013). The stand-alone 
frame model and mixed-type frame-membrane model are illustrated in Fig. 16. 

After defining the two sub-models in FormWorks-Plus, the integrated analysis program, Cyrus, 
was used to combine the sub-models and perform the analysis for the entire structure based on the 
substructure techniques.    

The experimental and mixed-type analysis load-deflection results are presented in Fig. 17. It 
can be seen that the mixed-type analysis predicted the peak loads and pinching effects with better 
accuracy than the stand-alone frame analysis. The reason is that unlike frame analysis software, 
VecTor2 is applicable for the joint panel zone where the strain distribution is significantly 
nonlinear. In addition, the VecTor2 sub-model was able to compute the slip in the critical part of 
the structure and consider it in the analysis. 
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available in FormWorks-Plus. 
The structure was modelled in FormWorks-Plus using the Auto-Meshing feature. The web was 

modelled using 8-DOF rectangular elements with SC composite material type developed recently 
in FormWorks-Plus and VecTor2 programs. The flanges were modelled using conventional RC 
rectangular elements. The faceplates and bending stiffener of the flanges were modelled with truss 
bar elements instead of steel plates to avoid incorrectly introducing confinement to the web. To 
capture confinement effects due to steel plates of the web and column steel plates of the flanges, 
smeared out-of-plane reinforcement components with the ratios of 0.36% and 2% were added to 
the web and flange materials, respectively.  

The material properties used in the experiment are described in Table 3. The strain hardening 
and ultimate strain values were not provided; thus a tri-linear response was assumed with strain 
hardening at 10×10-3 and ultimate strain at 150×10-3. Also, since the material properties of the steel 
plates of the flanges were not provided, they were assumed to have similar properties as the web 
steel plates.  

Nodes at the bottom row were restrained in the both X and Y directions to provide fully fixed 
condition at the base. Lateral force was applied as an imposed displacement load at the mid-height 
of the top slab. The load was monotonically increased until failure with the increments of 0.5 mm. 
In addition, the self-weight of the structure was considered with a constant gravity load applied on 
all rectangular elements. Fig. 19(a) shows the finite element model created in FormWorks-Plus. It 
should be noted that all the material models and analysis options were set to the default values of 
the VecTor2 program and no fine tuning of the analysis parameters was performed.  

A brief parametric study was performed to investigate the sensitivity of the results to mesh size 
and load step. The calculated load-deflection responses are compared to the experimental results in 
Fig. 20. The mesh sensitivity analysis was performed using three different mesh sizes with 0.2 mm 
load increments. Details of each mesh size are described in Table 4. For the load step sensitivity 
analysis, four different load increments ranging from 0.2 mm to 2 mm were selected. All the 
analyses were performed using mesh Type 3. The parametric study demonstrated that the peak 
load and the decay in the post-peak response were somewhat sensitive to the mesh size. As the 
mesh became finer, the analysis results converged and correlated better with the experimental 
behaviour. The load step sensitivity test showed only minor effect on the results compared to the 
mesh size. Analyses with different load increments resulted in the same peak load value. However, 
as the load increments became larger, the analysis started to underestimate the initial stiffness of 
the structure. Therefore, mesh Type 3 with load increments of 0.2 mm produced reasonably 
converged values for the analysis results and was selected for comparison against the experiment.   

Based on the results, the overall behaviour of the specimen was predicted reasonably well. In 
particular, the initial stiffness, yielding of the web plate, and ultimate load capacity showed 
excellent agreement with the experimental results. The ratio of the calculated to measured yield 
force of the web plate and ultimate load capacity of the wall were 0.99 and 1.04, respectively. In 
both the analysis and experiment, the wall exhibited a shear-critical behaviour with crushing of the 
web in diagonal planes across the center of the web and at the base of the flange. Also, similar to 
the experimental results, the analysis concluded that there was no yielding in the steel plates of the 
flanges. Fig. 19b illustrates the analysis crack pattern and deflected shape at the peak load stage.  

Although in general the computed response agreed well with the experimentally observed 
behaviour, the analysis overestimated the stiffness in the load stages close to the peak load and the 
strength degradation in the post-peak response. These were likely consequences of several 
assumptions made in the process of creating the model and the analysis. It was assumed that the 
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Table 3 Material properties for BS70T10 shear wall 

Material 
Yield stress Ultimate stress Young's modulus 

Poisson's ratio 
(MPa) (MPa) (MPa) 

Web steel plate 382 503 195152 0.267 

Concrete - 33 24124 0.207 
 

Table 4 Details of mesh size for mesh sensitivity analysis 

Mesh type 
Element size (mm) 

Total number of elements 
Web Flange 

1 100 × 100 60 × 100 1138 
2 50 × 50 30 × 50 2200 
3 40 × 40 20 × 40 2968 

 
4.3 SFRC shear panel 
 
Susetyo et al. (2013) tested a series of SFRC panels with the size of 890 × 890 × 70 mm under 

pure monotonic in-plane shear loads. The test parameters were fibre type, fibre-volume content, 
and concrete compressive strength. The test setup is illustrated in Figs. 21(a) and 21(b). To 
demonstrate the application of the proposed GUI for SFRC materials, Panel C1F1V2 which had 
1.0% fibre-volume content from RC80/50BN fibre type, was modelled. The concrete had a 
compressive strength of 53 MPa and maximum aggregate size of 10 mm. The RC80/50BN type of 
fibre was characterized by a tensile strength of 1050 MPa, a bond strength of 3.88 MPa, a fibre 
length of 50 mm, and a fibre diameter of 0.62 mm. The panel also contained 40 D8 deformed 
wires in the longitudinal direction. The steel wires had a yield strength of 555 MPa, an ultimate 
strength of 647 MPa, and a modulus of elasticity of 32500 MPa.  

Given the uniform stress condition within the panel, it was possible to model the specimen 
using a single 8-DOF rectangular element in FormWorks-Plus (Fig. 21(c)). The steel fibre 
component and longitudinal reinforcement were modelled as smeared. All the material models and 
analysis options were set to the default values of the VecTor2 program except the pre-peak 
compression model for which the Popovics High Strength model was selected due to the high 
concrete strength used in the experiment. To be consistent with the experiment, the loading was 
applied in a force-controlled manner. The load was monotonically increased until failure with the 
increments of 1 kN.    

The computed load-deflection response is compared against the experimentally observed 
behaviour in Fig. 22. The computed response agrees reasonably well with the experimental result. 
The SFRC model in VecTor2 was able to consider local effects such as slip deformation due to 
shear stress. The local behaviour of the concrete and reinforcement correlated well with 
experimental results. The concrete compressive strength remained less than 20% of the cylindrical 
compressive strength. The longitudinal reinforcement stress remained less than 45% of the 
yielding strength. Therefore, in both the experiment and analysis, the failure mechanism was not 
governed by crushing of concrete or yielding of the reinforcement. The failure was caused by the 
formation of a large crack which resulted in fibre pull-out and thus loss of the fibres’ ability to 
transmit tensile stresses across the crack. At the final load stage, the measured and calculated crack 
width were 0.45 mm and 0.31 mm, respectively.   
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files compatible with input values of the analysis program. The flexible and object-oriented 
structure of FormWorks-Plus enables easy inclusion of new output formats to the program, 
facilitating its usage for other analysis tools.  

The development of the GUI described above is still in progress. The program is being 
enhanced with a 3D Auto-Meshing feature which will greatly facilitate the modelling process of 
complex 3D structures.  
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