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Abstract: The traditional smeared crack macromodels for the analysis of masonry structures consider masonry as a homogeneous material
with the effects of mortar joints included in an average sense. This approach, suitable for the analysis of large structures, implicitly excludes
the possibility of representing local elastic and inelastic mechanisms involving mortar joints. In this study, an innovative formulation based
on the disturbed stress field model (DSFM) is proposed for the analysis of unreinforced masonry structures. The advancement introduced by
the model lies in the possibility of simulating the global average behavior of the composite material in combination with the local nonlinear
shear slip response of both bed and head joints. This paper describes the formulation of the model; as well, it presents results obtained from
the simulation of tests performed on shear walls demonstrating the ability of the DSFM to reproduce the structural response of masonry
structures. DOI: 10.1061/(ASCE)ST.1943-541X.0000906. © 2013 American Society of Civil Engineers.
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Introduction

Masonry is a composite building material composed of units
(e.g., stones, bricks, blocks) connected by mortar joints placed
horizontally and vertically within the brickwork. The mortar joints
normally act as planes of weakness because of their low tensile and
shear bond strengths. The presence of the joints makes masonry an
orthotropic material having directional properties that depend on
the orientation of the joints relative to the applied principal stresses.
As with reinforced concrete, three different approaches can be used
in modeling the behavior of masonry elements: the discrete crack
approach, the homogenization techniques, and the smeared crack
approach.

The discrete crack approach is based on a micromodeling
concept in which the units and mortar are modeled separately
involving the consideration of the properties of each component.

Homogenization techniques represent another growing re-
search field among the masonry community. The method allows
determination of constitutive relations in terms of average stresses
and strains starting from the constitutive properties of the single
components; a complete review of the most important advances
in this research field can be found in Lourenço et al. (2007). On
the one hand, these techniques would avoid performing expensive
tests and changing the material model when changes in single
components properties occur; on the other hand, the bricks and
mortar properties are often unknown and so they have to be
determined by inverse fitting of the composite material properties.

The smeared crack approach follows a macromodeling concept
in which the blended properties of the masonry material are taken
into account. Attempts to develop macromodels for representing
unreinforced masonry have been reported by Lourenço and Rots
(1997) and Lotfi and Shing (1991), with the former especially
proving to be a useful tool capable of providing reasonably accurate
predictions of structural behavior in the case of small shear walls as
well as large unreinforced masonry buildings. However, despite
their simplicity and low computation cost, macromodels present
some limitations that are a direct consequence of the assump-
tions on which they are based. The approach usually adopted in-
volves modeling masonry with material laws that consider the
properties and behavior of mortar joints and units in a blended
or smeared sense.

This paper presents an alternative phenomenological macromo-
del for masonry that is based on the disturbed stress field model
(DSFM) specifically developed by Vecchio (2000, 2001) for
reinforced concrete. Unlike conventional smeared crack models,
the DSFM for masonry is able to combine the average macroscopic
representation of the material behavior with the local shear stress-
shear slip response of mortar joints. In addition to the typical
advantages of macromodels (low computational costs, synthetic
representation of the structural behavior), the proposed formulation
attempts to enable the prediction of structural response even in
cases in which the damage mechanism is governed by the local
behavior of masonry joints. A complete discussion of the model
and its performance can be found in Facconi (2012).

The formulation of the DSFM reported in this paper can be used
only for the analysis of masonry structures subjected to monotonic
loading conditions. Future improvement of the proposed model
will aim to develop procedures for simulating the cyclic response
of masonry structures.

Overview of Conceptual Model

Depicted in Fig. 1, for the purposes of discussion, is a typical un-
reinforced masonry shear wall. Assuming that such a structural
element is reasonably larger than the single masonry components,
the joints and units can be considered smeared over the continuum
area. Thus, a field of internal average stresses and strains sustaining
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the load applied to the structure may be defined. With masonry,
both compressive and tensile stresses are active components of
the internal load-resisting mechanism. Consider a small region
of the wall that is large enough to span a number of joints and
units but, at the same time, is sufficiently contained such that
the sectional forces can be considered uniform. Within that area,
the material is subjected to a field of average principal tensile
and compressive stresses (fm1, fm2) that are related to the
corresponding average strains by appropriate nonlinear constitutive
relationships that characterize the behavior of the composite. As a
consequence of the principal tensile stresses, the composite
material can experience smeared cracks oriented in the principal
average compressive stress direction. The orthotropic behavior
of masonry is mainly due to the presence of thin mortar joints that
act as planes of weakness. To provide equilibrium to the masonry
membrane element subjected to principal average stresses, a set of
local shear (vbj, vhj) and normal (fnbj, fnhj) stresses develop along
bed and head joints. The local shear stress acting parallel to the joint
gives rise to shear rigid body slip between the two unit-mortar
interfaces that delimit the joint. This local deformation has to be
combined with the average (smeared) strains to obtain the total
strains that represent the deformation of the whole masonry
membrane. Finally, the internal load-resisting mechanism may
be considered as consisting of a field of average stresses locally
disturbed by stresses acting along the mortar thin joints.

The formulation of the DSFM presented in this paper aims to
pursue the previously mentioned conceptual description of the
masonry behavior by appropriate equilibrium, compatibility, and
constitutive relationships.

Equilibrium Conditions

Fig. 2(a) shows the free body diagram of a masonry element
subjected to uniform stresses, ½f� ¼ ffx; fy; vxyg, applied along

the membrane edges. The masonry element consists of several units
connected by mortar joints that are arbitrarily inclined at an angle α
with respect to the element reference axes x − y; the local reference
axes x 0 − y 0 are, respectively, parallel and perpendicular to the bed
joints. As is typically the case in practice, the head and bed joints
are considered perpendicular to each other. The forces applied to
the masonry element are resisted by internal stresses acting in the
masonry components. That said, the equilibrium of the membrane
element has to be evaluated globally in terms of average smeared
stresses and locally by considering the stresses acting along the
mortar joints.

In the model, masonry is considered as an orthotropic material
that may experience the formation of smeared cracks; thus, the
average principal masonry stresses fm2 and fm1 [Figs. 3(b and c)]
act parallel and perpendicular to the crack plane whose direc-
tion is defined by the angle θ. In order to take into account the
tension-softening behavior of masonry, the principal stress fm1 is

Fig. 1. Disturbed stress field approach for masonry elements

Fig. 2. Unreinforced masonry element: (a) geometry and loading con-
dition; (b) Mohr’s circle for average stresses in masonry
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considered active even after cracking. To relate the average net
strains to the global stresses applied to the element, the following
relationship may be used:

½f� ¼ ffx; fy; vxyg ¼ ½Dm�½εm� ð1Þ

where [Dm]= material secant stiffness matrix for masonry; [f] =
stress vector referred to by the global reference system x − y;
and [εm] = net strain acting in the masonry. Once the principal
stresses are determined, the internal masonry stresses fmx, fmy,
and vmxy can be simply evaluated by means of the Mohr’s circle
of stress reported in Fig. 2(b).

Along the crack planes, perpendicular to the principal tensile
stress direction [Fig. 3(a)], no shear stresses are considered acting.
The local internal stresses acting at the joint locations may be de-
rived from the equilibrium conditions of the unreinforced masonry
element; therefore, with reference to the Mohr’s circle of stress
shown in Fig. 2(b) and to the equilibrium conditions depicted in
Fig. 3(d), the joints stresses result from standard relations

fmx 0 ¼ fnhj ¼ ½ðfm1 þ fm2Þ þ ðfm1 − fm2Þ · cos 2ψ�=2 and

fmy 0 ¼ fnbj ¼ ½ðfm1 þ fm2Þ − ðfm1 − fm2Þ · cos 2ψ�=2 ð2Þ

vmx 0y 0 ¼ vbj ¼ vhj ¼ ½ðfm1 − fm2Þ · sin 2ψ�=2 ð3Þ

where ψ ¼ θ − α is the difference between the angle θ normal to
the crack direction and the angle α, which defines the direction of
the bed joints. According to the equilibrium condition represented
by Eq. (2), the head joints shown in Fig. 3(d) are assumed to be all
aligned and not staggered as is typically the case in brick masonry;

future developments will be addressed to improve this simplifying
assumption.

Compatibility Relations

The compatibility conditions that characterize the response of the
masonry elements are represented by the illustrations shown in
Fig. 4. It is assumed that total deformations exhibited by the
masonry element turn out from the superposition of two compo-
nents: the former is the strain resulting from the deformation of
the continuum due to the applied stresses, with the cracks
considered smeared within the element area; the latter is repre-
sented by the strain that results from the rigid body slip occurring
along bed and head joints. With reference to an arbitrary x-y
reference system, it is the net strains ½εm� ¼ fεmx; εmy; γmxyg
due to average constitutive response that must be employed within
appropriate constitutive relationships to determine the average
masonry stresses. Because the model in this paper is based on a
principal strain approach, Mohr’s circle of strain shown in
Fig. 4(a) can be used to determine the principal strains from the
net strains

εm1;εm2 ¼
εmx þ εmy

2
� 1

2
½ðεmx − εmyÞ2 þ τ2mxy�1=2 ð4Þ

The inclination of the cracks within the continuum is assumed to
be coincident with the inclination of the net principal strains, θ, and
the inclination of the principal stresses, θσ. That is, the rotating
crack concept is adopted, thus

θ ¼ θσ ¼ 1

2
tan−1½γmxy=ðεmx − εmyÞ� ð5Þ

It is assumed that the masonry element consists of rectangular
bricks that are mutually connected by head and bed mortar
joints having a constant thickness (thj, tbj) and spacing (shj,
sbj) [Fig. 4(b)]. The shear stress acting parallel to the joint causes
a local slip displacement along the joint plane whose magnitude
is δsbj for the bed joints and δ

s
hj for the head joints. Thus, the average

shear strain due to the slip of bed and head joints may be respec-
tively defined as follows:

γsbj ¼ δsbj=sbj; γshj ¼ δshj=shj ð6Þ

The total slip strain can be decomposed into orthogonal
components relative to the x-y reference system, which can be
computed respectively for bed ½εsbj� and head ½εshj� joints by Mohr’s
circle construction [Fig. 4(b)]

½εsbj� ¼ fεsx;bj; εsy;bj; γsxy;bjg ¼ fγsbj=2 · sinð2αÞ;
− γsbj=2 · sinð2αÞ; − γsbj · cosð2αÞg ð7Þ

½εshj� ¼ fεsx;hj; εsy;hj; γsxy;hjg ¼ f−γshj=2 · sinð2αÞ; γshj=2
· sinð2αÞ; γshj · cosð2αÞg ð8Þ

The sum of the resultant vectors provides the equivalent average
strain slip vector ½εs�

½εs� ¼ ½εsbj� þ ½εshj� ð9Þ

In addition to the net and slip strains, the masonry element
may experience two other types of strain offset effects (Vecchio
1992, 2000): elastic strain offsets [ε0m] arising from mechanisms
such as thermal expansion or mechanical expansion, and plastic

Fig. 3. Equilibrium conditions of unreinforced masonry element:
(a) applied stresses; (b) perpendicular to crack plane; (c) parallel to
crack plane; (d) at joints location
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strain offsets [εpm], which may arise from cyclic loading
conditions or loading into postpeak levels. By considering such
effects [Fig. 4(c)], the total (apparent) strain ½ε� ¼ ðεx; εy; γxyÞ
relative to the global reference system results from the following
relationship:

½ε� ¼ ½εm� þ ½εs� þ ½εom� þ ½εpm� ð10Þ

The angle θε, which denotes the inclination of the total principal
strains, can be derived as follows:

θε ¼
1

2
· tan−1½γxy=ðεx − εyÞ� ð11Þ

The cracks, smeared over the area of the masonry element, are
characterized by an average width w and average spacing s. In
most old and modern masonry structures, units are generally
much stiffer and stronger than mortar and joints have a smaller
thickness compared with single units; therefore, it is reasonable
to assume that in a masonry element cracks tend generally to form
into the joints before bricks. In view of this, one can define
nominal crack spacings in the x 0- and y 0-directions, denoted
sx 0 and sy 0 , which correspond to the head joints spacing shj
and the bed joints spacing sbj, respectively. Hence, by taking into
account the direction α of bed joints also considered in Eqs. (7)
and (8), the average crack spacing in the cracked continuum may
be calculated as

s ¼
�
sinψ
shj

þ cosψ
sbj

�−1
ð12Þ

The average tensile net stain and the average crack spacing can
be used to estimate the average crack width w through the following
simple relationship:

w ¼ εm1 · s ð13Þ

Masonry Compressive Stress-Strain Modeling

Compression stress-strain relationships for masonry are similar to
those for concrete and may be represented by similar equations
(Pauley and Priestley 1992). The compressive prepeak behavior
of masonry is reasonably defined when the initial tangent elastic
modulus (Em), the average compressive strength (f 0

m), and the
strain at peak ε0 are known. In many of the stress-strain models
typically used to represent the response of concrete in compression
[e.g., Kent and Park (1971), Fujii et al. (1988)], the ascending
branch is described by a parabolic function that usually represents
sufficiently well the actual response of the material. Though a
parabolic representation of the prepeak compressive stress-strain
curve is also considered suitable for masonry, in this paper the
alternative formulation proposed by Hoshikuma et al. (1997) for
confined reinforced concrete is used (Fig. 5). Unlike other models,
the Hoshikuma formula is based on a function that considers
the initial elastic modulus of masonry independently of the

Fig. 4. Compatibility conditions: (a) average (smeared) strains for masonry; (b) deformations due to local rigid body slip along the joints; (c) total
(combined) deformation of masonry material

© ASCE 04013085-4 J. Struct. Eng.

J. Struct. Eng. 2014.140.

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
N

IV
E

R
SI

T
Y

 O
F 

T
O

R
O

N
T

O
 o

n 
03

/3
1/

14
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



compressive strength and the strain at peak. This approach, imple-
mented in the DSFM, was found to be more effective in modeling
the compression response of masonry structures. The falling branch
of the stress-strain relationship is provided by the modified
Kent-Park model proposed by Priestley and Elder (1983) for ma-
sonry. This model consists of a linear descending branch and a final
horizontal plateau at 20% of the masonry compressive strength.
The slope Zm of the linear descending branch is given by

Zm ¼ ½ð3þ 0.29 · fjÞ=ð145 · fj − 1,000Þ − 0.002�−1 ≤ 1 ð14Þ

where fj = mortar compressive strength. The falling branch doesn’t
start from a peak strain value of 0.0015, as was assumed in the
original formulation, but from the peak strain εp determined by
Eq. (19). The resultant stress-strain curve represented in Fig. 5
is shifted along the horizontal axis to include the effect of plastic
and elastic strain offsets.

As with concrete, cracked masonry may exhibit a compression
softening effect due to tensile strain acting in the transverse
direction (Lotfi and Shing 1991), which can significantly reduce
the compressive strength of the composite. In this paper, the
compression softening effect is captured by a softening parameter
βd applied to the uniaxial compressive strength, ranging from 0 to
1, whose value is found from the following formula:

βd ¼ ð1þ Cs · CdÞ−1 ≤ 1 ð15Þ

in which the factors Cd and Cs are calculated according to the
Vecchio 1992-A model (Vecchio and Collins 1993)

Cd ¼
�
0 if r < 0.28
0.35 · ðr − 0.28Þ0.8 if r ≥ 0.28

; Cs ¼ 0.55 ð16Þ

where r ¼ εm1=εm2.
Masonry exhibits different directional properties due to the

mortar joints acting as planes of weakness. Hence, the material fail-
ure cannot be simply defined in terms of principal stresses but
needs an additional parameter, i.e., the bed joint orientation relative
to the principal stresses direction. Ganz (1985) proposed an
analytical failure criterion for masonry subjected to in-plane forces.
Ganz’s formulation starts with the assumption that a complete
failure criterion for masonry materials has to take into account
the possible failure of the components (bricks, mortar joints) as
well as the failure of the composite material. Bricks are considered
as prismatic blocks having internal vertical perforations
perpendicular to the bed joints; thus, each unit is decoupled into

an uniaxial and a biaxial stressed component having perfect
rigid-plastic behavior. Mortar joints are subjected to stresses acting
parallel and perpendicularly to the joint plane. Shear failure of
mortar bed joints is governed by means of a modified Coulomb’s
yield criterion in which the failure in compression of the mortar is
excluded because of the triaxial compressive state of stress acting in
the joints. Moreover, recognizing the usual weakness of the head
joints due to the partial or total lack of mortar, the shear strength of
head joints is neglected. The complete failure criterion for masonry
with tensile strength is obtained from the linear combination of dif-
ferent failure surfaces derived from the equilibrium of the materials
components (Ganz 1985). The original formulation of such a
criterion was expressed in terms of global stresses and cannot
be directly employed in a model based on a principal stress concept
such as the DSFM. By reformulating the equations of Ganz’s yield
criterion in terms of principal stresses and restricting the failure
domain to the biaxial compressive state of stress, a failure surface
similar to the one reported in Fig. 6 is obtained. To completely de-
fine such a surface, some basic masonry parameters have to be
known, i.e., the average compressive strength evaluated in the
x 0-axis direction (fmx 0 ), the average compressive strength evaluated
in the y 0-axis direction (fmy 0 ), the friction angle (φ) and the cohe-
sion (c) of mortar bed joints, the ratio between the tensile strength
and the compressive strength in the x-direction (ωm), and the value
of the unit-mortar interface tensile strength (f 0

t ). As typical in the
practice, bed joints are horizontal (α ¼ 0) so one may assume
fmx ¼ fmx 0 and fmy ¼ fmy 0 ¼ f 0

m (f 0
m = peak strength measured

in the direction perpendicular to bed joints). The failure surface
represented in Fig. 6 is a function of both the principal stresses
(f1, f2) and the angle θ, which defines the orientation of the prin-
cipal stresses relative to bed joints. As is clearly shown in Fig. 6, the
masonry compressive strength f2 depends on the value of the trans-
verse compressive stress f1; in fact, by increasing the ratio f1=f2,
the resultant failure curve shifts upward and the maximum com-
pressive strength of the composite material is increased as well.
Dividing the maximum masonry strength f2ðf1; θÞ obtained from
the failure criterion by the masonry strength fmy, one obtains the
reduction factor βm

βm ¼ f2ðf1; θÞ
fmy

≤ 1 ð17Þ

Hence, with the determination of the reduction factors βd and
βm, the peak stress fp and the strain at peak stress εp are evaluated
as follows:

fp ¼ −βd · βm · f 0
m ð18Þ

Fig. 5. Constitutive model for masonry in compression

Fig. 6. Ganz’s failure criteria for masonry in compression: principal
stresses formulation
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εp ¼ −βd · ε0 ð19Þ

where f 0
m ¼ fmy; and ε0 = compressive strain at peak stress f 0

m.
The reduction coefficient βm is considered both in the uncracked
and in the cracked stage of the material response.

The anisotropic behavior of masonry also affects the value of the
initial elastic modulus Em, with it being maximum in the direction
perpendicular to the bed joints (Emy) and minimum in the direction
parallel to the bed joints (Emx). To provide a smooth transition from
the maximum to the minimum value (i.e., a relationship that allows
for the evaluation of Em as a function of the angle ψ), the traditional
elastic theory for orthotropic materials may be used. The proposed
formulation is presented in the appendix.

Masonry Tensile Stress-Strain Modeling

Similarly to compression, masonry in tension is characterized by an
orthotropic behavior both in the elastic and in the inelastic stage. In
the elastic stage, masonry is assumed to be linear elastic until the
principal tensile stress fm1 reaches the maximum tensile strength f 0

t
and, as a consequence, the cracking process begins. Hence, before
cracking, the following linear relation is used:

fm1 ¼ EmðψÞ · εm1; 0 < εm1 < εcr ð20Þ
where EmðψÞ = elastic modulus evaluated according to the formu-
lation reported in the appendix to account for the elastic orthotropic
behavior of masonry; and εcr = first cracking strain. In this paper, as
a rough approximation, the tensile strength of the composite
material is assumed to be constant and equal to the tensile strength
of the joint-unit interface; the effect of the principal stress fm2 on
the average tensile strength of the composite is not considered in
the model at the moment. In view of the reasonable results provided
by the first numerical simulations of some full-scale masonry
structures, such an assumption has been considered acceptable
and able to well approximate the effective tensile behavior of
masonry. However, further refinements will be implemented in
the model in order to also include the orthotropic tensile strength
properties of the material.

After the cracking process has begun, the tensile stress in
masonry does not abruptly drop to zero but decreases gradually,
exhibiting a so-called tension-softening response. According to
Van Der Pluijm and Vermeltfoort (1991), the tensile response of
unreinforced masonry may be represented by an exponential func-
tion to indicate the relationship between the tensile stress and the
crack opening. In this paper, the exponential decay curve suggested
by Hordjik et al. (1987) is used

fm1 ¼ f 0
t

��
1þ

�
3
εm1

εtu

�
3
�
e−6.93

εm1
εtu − 0.027

εm1

εtu

�
; εm1 > εcr

ð21Þ

Based on the value of the Mode-I fracture energy GI
f, the

ultimate tensile strain εtu may be determined as follows:

εtu ¼ 5.136 ·
GI

f

f 0
t Lr

ð22Þ

where Lr = characteristic length; and f 0
t = average uniaxial tensile

strength of the masonry composite. The resultant tensile stress-
strain relationship, including the effect of elastic and plastic strain
offsets, is shown in Fig. 7. Reasonable values of the tensile fracture
energy can be chosen in the range 0.005 − 0.02 N=mm for tensile
bond strength values varying from 0.3 to 0.9 MPa.

Shear Slip Model for Masonry Joints

The shear behavior of mortar joints has been studied by many
researchers; a comprehensive dissertation and literature review
of the most prominent studies can be found in Guo (1991).
Atkinson et al. (1989), for one, conducted servo-controlled direct
shear tests to assess the response of brick masonry bed joints under
monotonic and cyclic loading conditions. According to the results
of these tests, the prepeak component of the shear-slip response
curve can be represented by a hyperbolic equation in which the
shear stiffness is not constant but is a function of both shear
displacement and normal stress. Despite this, Rots (1997) showed
that the prepeak shear-slip response may be reasonably assumed as
linear elastic with a constant shear stiffness. The postcracking shear
response of the joints may be reasonably represented by an
exponential softening relationship whose subtended area represents
the Mode-II fracture energy.

In this paper, as a first attempt at modeling the shear-slip re-
sponse of masonry joints in the context of the DSFM approach,
an elastic-plastic shear stress–strain relationship is adopted (Fig. 8).
The slope of the linear elastic branch coincides with the masonry
shear stiffness Gmj, whose value can be estimated by the usual
relationship taken from the theory of elasticity (Hendry 1998)

Gmj ¼ Emy=½2 · ð1þ νxyÞ� ð23Þ

where νxy = Poisson’s coefficient of the composite material. The
Young’s modulus used to derive the value of Gmj is kept constant
and equal to Emy. To determine the level (vj;max) of the horizontal
plastic plateau, a hyperbolic Mohr-Coulomb type yield criterion is
used (Fig. 9). Similar to the yield criterion proposed by Lotfi
and Shing (1994), it consists of a three-parameter hyperbola that

Fig. 7. Tensile stress-strain constitutive relation

Fig. 8. Shear stress–strain relationship for bed and head joints
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provides a smooth transition between the Mohr-Coulomb friction
law and the tension cutoff yield criterion. The criterion can be
expressed as follows:

Fðfnj; f 0
t Þ ¼ v2j − μ2ðfnj − f 0

t Þ2 þ 2ρðfnj − f 0
t Þ ¼ 0 ð24Þ

where ρ ¼ ½c2-ðμf 0
t Þ2�=2f 0

t = radius of curvature of the yield curve
at the vertex of the hyperbola; c = cohesion; and μ = slope of the
hyperbola asymptotes (i.e., tan φ). According to the proposed
approach, the strength f 0

t is assumed constant and equal to the
maximum tensile strength of the mortar joint-brick interface.
The slope of the hyperbola asymptote and the cohesion are kept
constant and equal to their initial values both in the elastic and
during the tension-softening stage. Moreover, dilatancy phenomena
are not considered in the model and, as a consequence, joints can-
not be subjected to normal displacement under shear stresses acting
along the joint plane. Once the stress normal to head or bed joints
fnj is known, the maximum value of the joint shear stress
vj;maxðfnjÞ is determined from the yield criterion. Therefore, if
the following relationship is satisfied:

jvjj ≤ jvj;maxðfnjÞj ð25Þ

and the joint has not already experienced yielding in previous load-
ing steps, then the shear slip is controlled by the linear elastic
branch of the shear stress-strain relationship (Fig. 8) as follows:

δsj ¼ jvjj · tj=Gmj ð26Þ

where tj = thickness of the joint. As soon as the yield condition is
reached according to

jvjj > jvj;maxðfnjÞj ð27Þ

then a friction plastic slip will occur.

Finite-Element Implementation

To determine the stiffness matrix ½k� for a single element, a material
stiffness matrix ½Dm� has to be constructed to relate the stress [f] to
the strain [ε]. In the proposed model, cracked masonry is assumed
as an orthotropic material in which Poisson’s effects can be reason-
ably neglected. Thus, the material stiffness matrix ½Dm� 0 referred to
principal stress directions 1,2 is given by

½Dm� 0 ¼
2
4Em1 0 0

0 Em2 0

0 0 Gm

3
5 ð28Þ

where Em1, Em2, and Gm = secant moduli. Once the net strains [εm]
resulting from Eq. (10) have been defined, the secant moduli turn
out from the following relations (Vecchio 1992):

Em1 ¼
fm1

εm1

; Em2 ¼
fm2

εm2

; Gm ≅ Em1 · Em2

Em1 þ Em2

ð29Þ

where fm1 and fm2 = principal stresses obtained from the corre-
spondent principal stress–strain constitutive relationships (Figs. 5
and 7). The material stiffnesses matrix ½Dm� referred to the global
reference system x-y results from the following transformation:

½Dm� ¼ ½T�T ½Dm� 0½T� ð30Þ
where the transformation matrix ½T� is given by

½T� ¼
2
4 cos2ψ sin2ψ sinψ cosψ

sin2ψ cos2ψ − sinψ cosψ
−2 sinψ cosψ 2 sinψ cosψ ðcos2ψ − sin2ψÞ

3
5 ð31Þ

The element stiffness matrix ½km� may be evaluated from
standard procedures that are simply summarized as

½km� ¼
Z

½B�T ½Dm�½B�dV ð32Þ

where [B] depends on the adopted element displacement functions.
To determine the prestrain nodal forces of a two-dimensional
element, strain offsets have to be taken into account; with
regard to the masonry joints shear-slip strain [εs], the free nodal
displacements [rsm] are determined from the element geometry
(Vecchio 1990), i.e.,

½rsm� ¼
Z

½εs�dA ð33Þ

Hence, from the free displacements the prestrain pseudonodal
forces can be found as follows:

½F�
m� ¼ ½km�½rsm� ð34Þ

Prestrain forces can be similarly defined for the elastic and
plastic offset strains. The prestrain forces are added to the exter-
nally applied nodal loads [F] to obtain the total force vector
½F 0�. A routine procedure is then used to calculate the nodal
displacement and the correspondent element strains [ε]. The latter
allow finding the element stresses by the following relation:

½f� ¼ ½Dm�½ε� − ½f0� ¼ ½Dm�ð½ε� − ½εs�Þ ð35Þ
where [f0] = element pseudostress. In order to perform a nonlinear
analysis of unreinforced masonry bidimensional elements, the pre-
vious formulations are included into a total load, iterative secant
stiffness procedure (Fig. 10), which leads to a progressive refine-
ment of the stiffness matrices ½Dm� as well as the element stiffness
matrices ½km�. To estimate the joint shear slip, a simple linear elastic
procedure (Fig. 11) has been implemented at the sixth step of the
iterative routine shown in Fig. 10. Through each iteration h, the
joint shear stress vj is calculated and the value of the joint shear
slip δsj is progressively estimated; if the joint is in the linear elastic
stage [Eq. (25)], the value of the joint slip is given by Eq. (26) by
considering the elastic shear modulus Gmj provided by Eq. (23); on
the other hand, in case of joint yielding [Eq. (27)], the joint slip δsj is

Fig. 9. Hyperbolic yield criterion
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found at each iteration by means of the secant shear modulus Gmj
obtained from the ratio of the current yielding stress value vj;max to
the shear slip δsðh−1Þj resulting from the previous iteration h − 1.
The proposed iterative routine is entirely implemented in the
finite-element program VecTor 2 [Wong and Vecchio (2002)].

Model Validation

Verification studies of the proposed model for unreinforced
masonry include comparisons with experimental tests performed
by different researchers on a full-scale masonry wall and a building
façade. Considering that the DSFM is based on a smeared crack
approach, the results of the numerical analyses reported in the
following naturally cannot completely reproduce local failure
mechanisms involving individual units and masonry joints; how-
ever, it will be demonstrated that the DSFM is capable of capturing
the global response of the structures and providing a qualitative
representation of the crack pattern.

As a part of a comprehensive research program on the behavior
of masonry shear walls, Ganz and Thürlimann (1984) carried out a
series of tests on clay hollow brick walls subjected to shear and
normal forces. The specimens (Fig. 12) were constructed of hollow
clay bricks (300-mm long, 190-mm high, 150-mm wide) set on 10
different layers connected by 10-mm-thick cement mortar joints.
One wall from the experiment, denoted as W1, was analyzed with
the DSFM; such a specimen was subjected to initial uniform load of
415 kN (p ¼ 0.61 MPa) applied over the entire length of the wall

web and to an imposed displacement applied in a monotonic
fashion at the top slab. The finite-element mesh used to simulate
the walls consisted of 900 eight-degree-of-freedom (DOF) constant
strain rectangular elements divided into two flange zones, a web
zone, and two slab zones in order to distinguish the different thick-
ness and material properties of the structure. The walls were as-
sumed to be fully fixed at the base and the monotonic load was
specified by applying a horizontal displacement to the top center
node of the top slab. The values of the mechanical and geometrical
parameters used in the numerical analysis to describe the masonry

Fig. 10. Nonlinear analysis algorithm implemented in the finite-
element program VecTor 2

Fig. 11. Analysis procedure to determine joint shear slip

Fig. 12. Geometry of the ETH Zurich masonry shear walls
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behavior are summarized in Table 1; almost all the parameters
coincide or are inferred from the masonry characteristics reported
by Ganz and Thürlimann (1982, 1984) except for GI

f and ε0, which
were derived by fitting experimental data. The value of the com-
pressive strength of mortar fj, used in the postpeak Park-Kent

model, was assumed to be equal to 23.9 MPa. The numerical
and the experimental load-displacement response of wall W1 are
compared in Fig. 13. From the figure it is apparent that the wall
strength and stiffness are quite well predicted by the finite-element
simulation. Moreover, the overall ductile behavior of the member,
which is largely attributable to the combined effects of the initial
vertical load and the lateral flanges, is also well captured by the
model. As observed during the experimental test, the ultimate fail-
ure is mainly due to the progressive crushing of the lower corner of
the wall in combination with the shear sliding mechanism involving
the joints placed along the diagonal; as proven by Fig. 14, the sim-
ulation results reasonably agree with this experimental evidence.

The façade reported in Fig. 15, named Wall D, is a part of a full-
scale two-story prototype tested under cyclic loading conditions by
Magenes et al. (1995). The two-wythe solid brick wall was 6-m
long, 6.44-m high, 250-mm thick, and had four openings. The
floors consisted of a series of isolated steel beams that were used
to apply both the horizontal and vertical loads during the test. The
masonry weight per unit volume was 17 kN=m3, while the total
vertical loads acting in correspondence to the first and the second
floor were, respectively, 124 and 118 kN. The façade specimen was

Table 1. DSFM Parameters Used for Modeling ETH Zurich Walls
Masonry Material

Materials and geometrical properties for DSFM

fmy (MPa)a = 7.61
fmx (MPa)a = 2.70
fty (MPa)a = 0.03
ωm (—)a = 0.126
c (MPa)a = 0.06
tanφ (—)a = 0.81
μ (—)a = 1.00
νxy (—)a = 0.10
Emy (MPa)a = 5,460
Emx (MPa)a = 2,463
GI

f (N=mm) = 0.02
ε0 (mm=m)=2.0
thj (mm)a = 10
tbj (mm)a = 10
shj (mm)a = 300
sbj (mm)a = 190
aParameters taken from Ganz and Thürlimann (1982, 1984).

Fig. 13. Load-displacement response of the wall W1: experimental
versus numerical response

Fig. 14. Wall W1 crack pattern: (a) experimental response at failure [Ganz and Thürlimann (1984), with permission from the Institute of Structural
Engineering, ETH Zurich]; (b) numerical crack pattern and deformed mesh at a displacement d ¼ 19 mm

Fig. 15. Geometry of the masonry façade (Wall D) tested by Magenes
et al. (1995)
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analyzed by using a finite-element model comprising 972 eight-
DOF rectangular elements whose mechanical properties (Table 2)
were estimated or derived from the literature (Magenes et al. 1995;
Berto et al. 2002). Mortar strength fj was assumed equal to 2 MPa
(Magenes et al. 1995). Two equal shear forces were applied mono-
tonically at floors level (Fig. 15) as imposed loads. The curves plot-
ted in Fig. 16 represent, respectively, the experimental (hysteretic
curves envelope) and numerical base shear (H) second floor dis-
placement (d2) response of Wall D. Relative to the experimental
response, the analysis response correlates well in terms of
maximum structure capacity; in fact, the predicted maximum base
shear load (Hpeak ¼ 168 kN) and the correspondent displacement
(dpeak ¼ 14.3 mm) are, respectively, 12 and 16% higher than the
experimental ones. The overall stiffness and ductility of the wall
are quite well predicted by the model. The comparison of the
numerical crack pattern detected at peak load [Fig. 17(b)] with
the experimental failure pattern [Fig. 17(a)] shows the ability of
the proposed model to predict the failure mechanisms. The progres-
sion of cracking observed during the finite-element simulation
seems to reflect the experimental damaging process; indeed,
cracking was initially limited to the spandrels between the openings
until, at a lateral displacement d2 ¼ 3.4 mm, a diagonal shear crack
appeared in the central pier at the ground floor. At the peak load
both the central and the external right spandrel presented a shear
failure mechanism in combination with flexural cracks located
along the base of all the three ground floor piers. The piers at
the second floor remained undamaged as observed during the
experimental test.

Conclusions

An alternative formulation is proposed for the nonlinear analysis of
unreinforced masonry structures subjected to monotonic loads; it is
based on the DSFM, a smeared rotating crack model originally for-
mulated for reinforced concrete. With respect to other continuum
models reported in the literature, the innovation introduced lies in
the ability of the DFSM to combine average behavior of the
composite material with the local shear-slip response of masonry
joints. By modeling the joints behavior separately, the proposed
model is able to capture the local shear response of the joints in
both the elastic and inelastic stages. Equilibrium, compatibility,
and stress-strain relationships are formulated in terms of average

Fig. 16. Load-displacement response of Wall D: experimental versus
numerical response

Table 2. DSFM Parameters Used for Modeling Magenes et al.’s Façade
Prototype

Materials and geometrical properties for DSFM

fmy (MPa)a = 6.20
fmx (MPa)b = 3.10
fty (MPa)b = 0.18
ωm (—)=0.045
c (MPa)a = 0.23
tanφ (—)a = 0.57
μ (—)=1.0
νxy (—)b = 0.10
Emy (MPa)a = 1,450
Emx (MPa)b = 1,000
GI

f (N=mm)b = 0.10
ε0 (mm=m) = 3.0
thj (mm)a = 10
tbj (mm)a = 10
shj (mm)a = 120
sbj (mm)a = 55
aParameters taken from Magenes et al. (1995).
bParameters taken from Berto et al. (2002).

Fig. 17. Wall D crack pattern: (a) experimental response at failure (Magenes et al. 1995); (b) numerical crack pattern and deformed mesh at a
displacement d2 ¼ 14 mm
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principal stresses and strain. A modified version of Ganz’s failure
criterion is introduced to take into account the orthotropic compres-
sive strength of the composite material. An elastic-plastic shear
stress-slip relationship associated with a hyperbolic yield criterion
is used to represent rigid body slip occurring along joints plane.

A verification of the proposed formulation was undertaken
through comparisons with the results of two full-scale shear wall
tests reported in the literature. The simulations provided reasonably
accurate predictions of the walls’ structural responses and
demonstrated the ability of the model to represent well both ductile
and brittle failure modes in masonry structures. Last, although the
formulation is based on a smeared crack concept, the crack patterns
observed in the test structures were captured quite well.

Further work is currently under way to improve the joints
shear-slip model and to verify the effectiveness of the DSFM for
the simulation of different types of unreinforced masonry structures.

Appendix. Evaluation of the Initial Tangent Modulus

With reference to the masonry element reported in Fig. 2(a), one can
assume a global state of stress [f] in which a uniaxial compressive
stress is arbitrarily considered. To convert such a state of stress to the
x 0 − y 0 reference system, the following transformation can be used:

½f� 0 ¼ ½T�−T · ½f�
where ½T� = transformation matrix [Eq. (31)]. For a linear elastic
orthotropic material in a plane state of stress, the resultant strains
are obtained from the following relationship:

½ε� 0 ¼

2
664

1
Emx

− νx 0y 0
Emy

0

− νy 0x 0
Emx

1
Emy

0

0 0 1
Gx 0y 0

3
775 · ½f� 0

where the shear modulus Gx 0y 0 is given by Weaver and Johnson
(1984)

Gx 0y 0 ≈ EmxEmy

Emxð1þ νx 0y 0 Þ þ Emyð1þ νy 0x 0 Þ with
νx 0y 0

νy 0x 0
¼ Emy

Emx

The strain vector ½ε� 0 can be transformed into global coordinates
by the following transformation:

½ε� ¼ ½T�T · ½ε� 0

A reasonable estimate of the masonry initial tangent modulus
Em (ψ) may be obtained by simply dividing the y component of
the global stress [fy] by the correspondent global strain εy; thus

EmðψÞ ¼
fy
εy
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