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Diverse Embedment Model for Steel Fiber-Reinforced  
Concrete in Tension: Model Development
by Seong-Cheol Lee, Jae-Yeol Cho, and Frank J. Vecchio

An analysis model is presented for calculating the response of steel 
fiber-reinforced concrete (SFRC) members subjected to tension. 
To predict the tensile stress of fibers across a crack, the pullout 
behavior of a single fiber with both sides embedded in cracked 
concrete is analytically investigated, considering both frictional 
bond behavior and mechanical anchorage effects. Thus, the 
proposed Diverse Embedment Model (DEM) can be applied to end-
hooked and straight fibers. The model is derived with consideration 
given to all possible fiber orientations and embedment lengths 
and as influenced by the member’s finite dimensions. The details 
of the experimental verification for the proposed analysis model, 
including the proposed fiber orientation factors, are presented and 
discussed in an accompanying paper.

Keywords: anchorage; bond; end-hooked fiber; fiber orientation factor; 
member size; steel fiber-reinforced concrete; straight fiber; tensile stress.

INTRODUCTION
Fibers are increasingly being used in concrete structures to 

compensate for concrete’s weak and brittle tensile behavior 
relative to its compression response. One of the most 
beneficial aspects of the use of fibers in concrete structures 
is that non-brittle behavior after concrete cracking can be 
achieved with fibers. The typical tensile stress and crack width 
relationships for normal concrete (NC) and fiber-reinforced 
concrete (FRC) are compared in Fig. 1. As indicated in this 
figure, the tensile stress sustainable in NC rapidly decreases 
immediately after cracking. In FRC, on the other hand, fibers 
crossing the crack interfaces significantly contribute to the 
load-carrying mechanism so that considerable tensile stress, 
being the sum of the tensile resistance provided by fibers 
and tension softening of the concrete matrix, respectively, 
can be achieved even with large crack widths. Therefore, 
the enhanced tensile stress behavior attainable with fibers 
should be realistically evaluated to accurately predict the 
post-cracking response of FRC.

Several researchers have made contributions to the 
development of analytical models for the uniaxial tensile 
behavior of FRC. Considering the random distribution of 
fiber embedment length, Marti et al.2 derived a relationship 
between crack width and tensile stress for FRC members. In 
this model, it was shown that the tensile stress provided by 
fibers decreases with an increase in crack width; however, 
the effect of the fiber inclination angle was not considered. 
In subsequent work by Foster,3 the evaluation of the tensile 
stress provided by fibers was made to account for fiber 
effectiveness as influenced by the random distribution 
of the fiber angle for fibers having an inclination angle to 
the crack normal direction less than p/3. Later, to more 
reasonably account for the effect of random distribution in 
the fiber inclination angle, the Variable Engagement Model 
(VEM)1 was proposed; it used an effective engagement 
concept wherein the effectiveness of fibers having an 
inclination angle less than the critical value increased with an 

increase in the crack width. In this model, the variable fiber 
embedment lengths were also considered so that variations 
of the tensile stress in FRC members could be predicted. 
However, a constant bond stress between the steel fibers and 
the concrete matrix was assumed; thus, the appropriateness 
of the model is questionable for end-hooked fiber types. 
Moreover, fiber slip was assumed to occur only on the side 
with the shorter length embedment, even though the crack 
width should equal the sum of the fiber slips from both sides 
of the crack. The slip from the longer embedded side may 
not be negligible, particularly when the embedded lengths of 
the fiber at a crack on either side are relatively similar.

Therefore, for more realistic calculations of the tensile 
behavior of FRC members, an analysis model is required that 
can consider the characteristics of fibers whose inclination 
angles and embedment lengths are randomly distributed. 
The model should consider the frictional bond behavior and 
mechanical anchorage effects of fibers and the influence of 
finite member dimensions.

RESEARCH SIGNIFICANCE
The use of FRC is becoming a more viable and prevalent 

option in reinforced concrete construction. To analyze 
and design various FRC structures, a proper evaluation 
of the tensile response of the material is critical because 
the tensile behavior of FRC is quite different from that of 
NC. In this study, an analysis model called the Diverse 
Embedment Model (DEM) is presented, which considers 
the pullout characteristics of fibers and their potentially 
restricted orientation so that the tensile behavior of FRC can 

Fig. 1—Tensile behavior of FRC.1
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be realistically predicted. The proposed DEM represents a 
more comprehensive approach than is currently available for 
the analysis of the structural behavior of reinforced concrete 
structures with steel fibers.

PULLOUT BEHAVIOR OF SINGLE FIBER
In deriving a tension model for FRC, it is necessary to 

consider the theoretical pullout behavior of a single fiber 
under two varying conditions: 1) where only one side of 
the fiber is embedded in the concrete matrix, whereas the 
other side is free or fully fixed; and 2) where both sides of 
the fiber are embedded in the concrete matrix. Because the 
slip of the longer embedded part of a fiber is not negligible 
when the embedded lengths on both sides are approximately 
similar, the pullout behavior of a single fiber embedded on 
both sides must be considered. The analysis procedure for 
both straight and end-hooked fibers will be derived to enable 
the calculation of the fiber stress at a crack, considering the 
effects of the fiber inclination angle and embedment length. 
The derived fiber stresses at a crack will be used in the next section 
for the calculation of the tensile stress provided by fibers.

Pullout behavior of single straight fiber embedded 
on one side

It can be postulated that, when a crack forms in FRC, the 
tensile stresses assumed by the fibers bridging the crack are 
transferred back to the concrete matrix through the bond 
behavior between the fibers and concrete matrix in the 
manner shown in Fig. 2. Several researchers4,5 have derived a 
corresponding governing equation for the pullout behavior of 
a single straight fiber with a circular cross section as follows
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Unlike with common steel reinforcing bar, the fiber length 
is relatively short compared to its transfer length; thus, the 
pullout behavior of a straight fiber embedded on one side must 
be considered to occur in two stages. First, when the slip at the 
crack is small, the transfer length is less than the embedded 
length of the fiber; thus, the fiber slips over only part of its 
embedded length (refer to Fig. 3(a)). In this figure, the slip that 
may occur before cracking is ignored because it is negligible 
compared to the slip after cracking. Secondly, when the slip 

at the crack is relatively large, the fiber slip extends over the 
entire embedded length and slip at the end of the fiber occurs 
(refer to Fig. 3(b)). For the first stage, the pullout behavior can 
be mathematically solved, as done for the ordinary reinforced 
concrete members subjected to uniaxial tension.6,7 For second-
stage behavior, on the other hand, one must consider that the 
tensile strain of the fiber at the embedded end is different from 
that of the concrete matrix after end slip has occurred. Here, 
the fourth-order Runge-Kutta method, which is a numerical 
method applicable to the solution of second-order differential 
equations, can be employed to calculate the pullout behavior 
considering the end-slip effect. With the concrete strain or 
stress at the fiber end preassumed for the given fiber end slip, 
the numerical analysis for the bond-stress distribution can 
be performed using the boundary condition that the concrete 
stress is zero at the crack.

Figure 4 shows the relationship between the fiber stress 
and the slip at the crack when the fiber is assumed to be 
embedded on one side only with half the fiber length. In this 
analysis example, a bilinear bond stress-slip relationship 
between the fiber and the concrete matrix was assumed, 
based on Nammur and Naaman4 and Lim et al.8 The tributary 
area of concrete considered effective was based on a prism 
diameter of 15 times the fiber diameter suggested by CEB-
FIP MC909 for ordinary reinforced concrete members. As 
shown in this figure, the fiber stress at the crack increased 
linearly up to a peak at which the bond stress reached the 
full bond strength and then decreased linearly because of 
the ensuing reduction in the embedded length of the fiber. 
Figure 5, which shows the corresponding variation of the 

ACI member Seong-Cheol Lee is a Postdoctoral Researcher in the Department of 
Civil Engineering at the University of Toronto, Toronto, ON, Canada. He received 
his PhD from Seoul National University, Seoul, Korea, in 2007. His research interests 
include the shear behavior of concrete structures and the analysis of prestressed 
concrete structures and fiber-reinforced concrete members.

ACI member Jae-Yeol Cho is an Assistant Professor in the Department of Civil and 
Environmental Engineering at Seoul National University, where he also received his 
PhD. His research interests include nonlinear analysis and optimized design of 
reinforced and prestressed concrete structures, material modeling, and similitude laws 
for dynamic testing of concrete structures.

Frank J. Vecchio, FACI, is a Professor in the Department of Civil Engineering at the 
University of Toronto. He is a member of Joint ACI-ASCE Committees 441, Reinforced 
Concrete Columns, and 447, Finite Element Analysis of Reinforced Concrete 
Structures. His research interests include nonlinear analysis and design of reinforced 
concrete structures, constitutive modeling, performance assessment and forensic 
investigation, and repair and rehabilitation of structures.

Fig. 2—Free body diagram for infinitesimal element with  
single straight fiber.

Fig. 3—Pullout behavior of single straight fiber embedded 
on one side.
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slip along the fiber for this case, indicates that the variation 
is negligible. Therefore, it can be assumed that the slip 
can be considered as constant along the fiber, and that the 
elongation of the fiber can be neglected. In other words, for 
simplicity, the pullout behavior of a single straight fiber can 
be considered as the rigid body translation, which means 
that displacement due to elastic strains in the fibers can be 
neglected, as assumed in the VEM.1

Pullout behavior of single straight fiber embedded 
on both sides

Figure 6 represents the pullout conditions of a fiber 
embedded on both sides when the fiber is perpendicular 
to the crack surface. The crack width equals the sum of 
slips from both sides of the cracked concrete. Note that 
the slip of the shorter embedded part is larger than that of 
the longer embedded part with the assumption of the rigid 
body translation for the pullout behavior of a single straight 
fiber; this is because the bond stress between the fiber 
and the concrete matrix for the shorter part must be larger 
to satisfy force equilibrium of the fiber at the crack. With 
the assumption of rigid body translation of the fiber and a 
bilinear bond stress-slip relationship between the fiber and 
the concrete matrix, the following force equilibrium equation 
can be derived when the slip for the shorter embedded part of 
the fiber is less than slip sf

( ) ( )f a short f short f f a long f longd l s K s d l l s K sp − = p − −
 

for  short fs s≤
(2a)

where sf is the slip corresponding to the full bond strength; 
and Kf is the bond modulus.

When the slip for the shorter embedded part is larger than 
sf, the bond behavior of the longer embedded part can be 
considered as an unloading mechanism on the bond stress-slip 
relationship while the bond stress of the shorter embedded 
part reaches the bond strength. Hence, the equilibrium 
condition for this case can be formulated as follows

( ) ( ),f a short f max f f a long f longd l s d l l s K sp − t = p − −
 

for  short fs s>
(2b)

From Eq. (2(a)) and (2(b)) and tf,max = sf Kf, the slip for the 
longer embedded part can be calculated as a function of the 
given sshort from the following equations
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The tensile stress of the fiber at the crack can then be 
calculated using the following relation
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Fig. 4—Fiber stress at crack with la = 0.5lf for straight fiber.

Fig. 5—Variation of slip along straight fiber when end slip is 
0.1 mm (0.004 in.).

Fig. 6—Pullout behavior of  fiber embedded on both sides.
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using Eq. (4) with sshort = slong = sf for the pullout strength of 
a fiber having an embedded length equal to one-half the fiber 
length. Therefore, in comparing Fig. 4 and Fig. 7, the crack 
width at the maximum fiber stress at a crack varies from sf 
to 2sf for fibers in which both sides are embedded according 
to the embedded length, whereas the slip at the peak stress 
for fibers in which only one side is embedded is fixed at sf, 
regardless of the embedded length of the fiber.

Fibers normal to crack surface—In calculations of the 
tensile stress in FRC, it is more convenient to use crack 
width as the defining parameter rather than the slip at the 
crack because the crack width can be directly calculated by 
multiplying the average tensile strain and the crack spacing. 
Figure 8 shows the relationship between the nondimensional 
shorter embedment length ratio la/lf and crack width at the 
maximum pullout stress. As evident in this figure, the crack 
width at the maximum pullout stress of the fiber at the crack 
can be idealized with respect to the ratio of the shorter 
embedded length to the fiber length.

2
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Because the relationship between the fiber stress at the 
crack and the crack width can be considered to be bilinear, 
the bond stress for the shorter embedded part of the fiber, 
which is used for the calculation of the tensile stress, can be 
calculated for the given crack width.
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Fibers inclined to crack surface—In addition to the 
random distribution of fiber embedment length, the effect of 
fiber orientation should also be considered when evaluating 
the tensile stress developed by fibers. To investigate the 
effect of fiber orientation, Banthia and Trottier10 conducted 
pullout tests on crimped single fibers, which can be 
considered similar to straight fibers embedded with various 
fiber inclination angles. Figure 9(a) shows how the frictional 

Figure 7 describes the variation of the fiber stress at a 
crack determined accordingly, displayed as a function of the 
crack width, which is the sum of the slips at the crack from 
both sides of the fiber and the shorter embedment length. It 
is evident in this figure that as the fiber embedded lengths 
to each side approach one-half the fiber length, the crack 
width for the peak fiber stress at the crack increases to 2sf. 
Also, the fiber stress at the crack increases to that calculated 

Fig. 7—Fiber stress at crack: crack width response.

Fig. 8—Crack width at maximum pullout stress.

Fig. 9—Effect of fiber inclination angle on behavior of crimped fiber from tests by Banthia 
and Trottier10: (a) frictional pullout strength; and (b) slip at frictional pullout strength.
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where wpq = sf [1 + 4(la/lf)2]/cos2q.
With the compatibility condition that wcr = slong + sshort and 

using Eq. (2), the slip for the shorter embedded part can thus 
be calculated for the given crack width as follows
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where B = lf – la – 2wcr – sfq; and C = lasfq – (lf – la – wcr)wcr.
Because the fiber stress at the crack reaches its peak value 

when the crack width is wpq, the maximum stress that the fiber 
experiences can be calculated from Eq. (4) and (9(a)) as follows
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where wcr is not larger than wpq. If the calculated maximum 
experienced stress is larger than the fiber tensile strength, it 
can be concluded that the fiber has already ruptured.

Pullout behavior of single end-hooked fiber 
embedded on both sides

Unlike the anchorage of a straight steel fiber, which can 
be characterized by frictional bond behavior alone, an end-
hooked steel fiber also benefits from mechanical anchorage 
provided by the end hook. Sujivorakul et al.13 reported that 
end-hooked fibers exhibited much larger pullout forces 
than straight fibers, and that the difference in the pullout 
load between the two fiber types came from the mechanical 
anchorage of the end hooks. In this study, the tensile force 
provided by the mechanical anchorage is idealized with 
a parabolic and linear relationship for the pre- and post-
peak behaviors, respectively, as shown in Fig. 11. For the 
descending regime, after the slip amount exceeds the length 
of the end hook, it can be assumed that the tensile force due 
to the mechanical anchorage becomes zero because of the 
deterioration of the concrete matrix near the mechanical end 
hook and the straightening of the hook.

The effect of the inclination angle on the behavior of 
end-hooked fibers will be modeled according to the trends 
portrayed in Fig. 12. It will be assumed that the slip at peak 
bond stress (relating to the friction mechanism) and the slip 
at peak tensile force (relating to the mechanical anchorage 
mechanism) both increase with an increasing angle in 
a manner similar to the frictional bond slip observed in 
straight fibers, as influenced by the fiber inclination angle. 
After the shorter embedded part of a fiber reaches its pullout 
strength, the shorter embedded part follows the post-peak 
behavior for the mechanical anchorage effect, whereas the 

pullout strength of the fiber is affected by the fiber inclination 
angle, defined as the difference between the fiber orientation 
and normal to the crack surface. As shown in this figure, the 
frictional pullout strength for the crimped steel fiber is only 
slightly affected by the fiber inclination angle for angles less 
than 30 degrees, whereas it decreases with an increasing 
fiber inclination angle for angles larger than 30 degrees. 
From experimental tests with steel fibers, Ouyang et 
al.11 reported that the pullout strength of inclined fibers was 
generally greater than that of aligned fibers, whereas Lee and 
Foster12 reported that the pullout strength of a straight fiber 
decreased with an increase in the fiber inclination angle. 
Given these contradictions between findings by previous 
researchers, the effect of the fiber inclination angle on the 
pullout strength is not yet clear. For analytical simplicity 
in this study, the bond strength is assumed to be constant, 
regardless of the variation of the fiber inclination angle.

Unlike the effect of the fiber inclination angle on the bond 
strength, it was determined by Banthia and Trottier10 that 
the slip at the peak pullout load increases with an increase 
in the fiber inclination. Through comparisons with the 
experimental results, as shown in Fig. 9(b), the variation of 
the slip at the maximum pullout load sfq can be idealized 
according to Eq. (7) (refer also to Fig. 10).

2cosf fs sq = q (7)

Using Eq. (6(a)) and (6(b)) and Fig. 10, the bond stress for 
the shorter embedded part of a fiber with inclination angle q 
can be calculated for the given crack width

Fig. 10—Bond slip-stress relationship due to friction for 
inclined fiber from Nammur and Naaman.4

Fig. 11—Idealized relationship between slip and pullout 
force due to mechanical anchorage of end-hooked fiber.
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where Peh,max can be found from the frictional bond strength 
of a straight fiber tf,max; and the pullout strength of an end-
hooked fiber teh,max can be expressed as follows

( ), , , 2
f

eh max eh max f max eh f

l
P s d

 
= t − t − p  

(14)

When sshort is less than seh/cos2q, the current fiber stress 
at the crack is the maximum experienced value. If the 
maximum experienced stress is larger than the fiber strength, 
the fiber has already ruptured.

With Case 2, when la is between (lf – li)/2 + sshort and 
(lf – li)/2, it can be assumed that the pullout of the mechanical 
anchorage causes deterioration of the concrete matrix near 
it. Therefore, the bond stress along the still embedded part of 
the fiber can be neglected. For Case 3, because the combined 
anchorage resistance of the longer embedded part of the 
fiber is much greater than that of the shorter part, it can be 
assumed that the slip from the shorter embedded side is the 
dominant contributor to the crack width. Hence, Case 3 can 
be simplified by assuming that the fiber stress at a crack can 
be calculated from the pullout behavior of a straight fiber that is 
embedded on only one side.

CONSIDERATION OF MEMBER DIMENSION AND 
FIBER EMBEDDED LENGTH

Generally, it can be assumed that the fiber inclination 
angle and the fiber embedment length, with respect to 
cracks in the concrete matrix, are randomly distributed. 
Using the formulations for individual fiber stress at a 
crack developed in the previous section, the average fiber 
stress in randomly distributed fibers at a crack can now be 
derived. Finite member dimensions may affect the fiber 
orientation, however; this influence will now also be taken 
into account.

General fiber orientation in three-dimensional (3-D) 
infinite member

Steel fibers randomly oriented in a 3-D infinite 
element can be illustrated with a sphere, as shown in 
Fig. 13.1,14,15 Because the probability density for the fiber 
inclination angle can be expressed with a sine function, 
the fiber stress at a crack, averaged over the full range 
of fiber inclination angles, can be calculated with the 
following equation.

longer embedded part undergoes partial unloading for both 
the frictional bond and the mechanical anchorage stresses.

To calculate the stress at the crack in an end-hooked steel 
fiber, three possible cases should be considered with respect 
to the force equilibrium at a crack: 1) the end hook in the 
shorter embedded part of the fiber remains embedded; 2) the 
end hook is pulled out; and 3) the end hook in the shorter 
embedded part of the fiber was not originally fully embedded.

The force equilibrium condition in Case 1 can be 
described as follows

( )
( )

,

,

f a short short eh short

f f a long long eh long

d l s P

d l l s P

p − t +

= p − − t +
 

(11)

( )for  2a short f il s l l− > −

The slips, bond stresses, and tensile forces at the 
mechanical anchorages can be calculated for a given crack 
width through an iterative procedure for sshort using the 
previous equation in which the frictional bond stresses and 
the mechanical anchorage forces can be determined from 
Fig. 11 and 12. Thus, the fiber stress at a crack is calculated 
from the sum of the stresses due to the mechanical anchorage 
and the frictional bond stress along the fiber as follows

( ) ,
, 2

4 4short a short eh short
f cr

f f

l s P
d d

t −
s = +

p
(12)

To check whether fiber rupture has occurred, when the slip 
in the shorter embedded side is larger than the slip causing 
the maximum pullout force, the maximum experienced fiber 
stress at a crack can be calculated as

2
,

, , 2

44 cos
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f a
eh max

f cr exp
f f

slP
d d

 t − qs = +
p

 
(13)

2for  cosshort ehs s> q

Fig. 12—Effect of inclination angle on behavior of end-hooked fiber from tests by Banthia 
and Trottier10: (a) pullout strength; and (b) slip at pullout strength.
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orientation can be simply considered in the same manner 
using the previous equation.

Because the probability density for the fiber inclination 

angle q  is sinq  in an infinite member (refer to Fig. 13), 
and the total possible area for the fiber inclination angle is 
2p(sinqu + sinql), as shown in Fig. 15(a), the fiber stress at a 
crack considering the effect of member thickness, which is 
averaged through the variation of the fiber inclination angle, 
can be calculated as follows

(17)
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( ) ( )( )

q

p

s

s q q q + q q q q∫
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f cr a

f cr a uc a lc a

u a l a

l
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where quc = sin–1(min(1,sinqu/sinq)) and qlc = sin–1(min(1,sinql/
sinq)), respectively, as illustrated in Fig. 15(b).

Fiber orientation in 3-D finite member
The procedure for determining the fiber inclination angle 

in a 2-D member, presented previously, can be expanded to 
3-D members. Consider members with a rectangular cross 
section subjected to uniaxial tension, where it can be assumed 
that a crack surface is always perpendicular to the boundary 
surfaces, as in dog-bone specimens commonly tested to 
investigate the uniaxial tensile behavior of FRC. Here, the 
possible surface area for the fiber inclination angle on a sphere 
having a radius of unit length, as shown in Fig. 16, can be 
calculated as follows

( ) ( )
( ) ( )

2
0

, ,
2 sin

 , ,
uuc a llc a

ulc a luc a

l l
A d

l l
p

q

 q q + q q
= q q∫  

+ q q + q q 
(18)

where quuc = max(0,qucy – 0.5p + qucz); qulc = max(0,qucy – 
0.5p + qlcz); qluc = max(0,qlcy – 0.5p + qucz); qllc = max(0,qlcy 
– 0.5p + qlcz) with qucy = sin–1(min(1,sinquy/sinq)); qlcy = 
sin–1(min(1,sinqly/sinq)); qucz = sin–1(min(1,sinquz/sinq)); 
and qlcz = sin–1(min(1,sinqlz/sinq)).

In the previous equation, uyq , lyq , uzq , and lzq  are calculated 
from the following
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(19b)

The area considering the fiber stress at a crack can also be 
calculated according to the following integration.

( )/2
, , ,0 , sinf cr f cr al dp

qs = s q q q∫ (15)

Fiber orientation in two-dimensional (2-D) member
In general, because fresh concrete is placed in forms, 

fiber orientation will be influenced by the dimensions of the 
member and the finishing of exposed surfaces. Assuming that 
the crack surface is perpendicular to the boundary surface, 
as in uniaxial tensile specimens with a rectangular cross 
section, the possible fiber orientation conditions in members 
whose thickness is larger than double the fiber length 
can be divided into three cases: 1) the fiber orientation is 
affected by both long and short parts of the fiber; 2) the fiber 
orientation is affected by only the longer part; and 3) the fiber 
orientation is not affected. From the geometrical conditions 
shown in Fig. 14, the possible angle of fiber orientation in 
2-D members can be calculated by the following.

(16)
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In members with a thickness less than twice the fiber 
length, the effect of both boundary surfaces on the fiber 

Fig. 13—Probability of fiber inclination angle using sphere 
representation.1,14,15

Fig. 14—Effect of boundary surface on fiber inclination angle.
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embedment length at initial cracking is uniform, the average 
fiber stress at a crack considering the randomly distributed 
fiber inclination angles and fiber embedment lengths can be 
calculated from Eq. (15), (17), and (21) as follows.

( )2
, , , ,0

1
2

fl
f cr avg f cr a a

f

l dl
l qs = s∫

 
(22)

DERIVATION OF FIBER ORIENTATION FACTOR 
CONSIDERING MEMBER DIMENSION

To define the tensile stress on a crack surface of unit area, 
the number of fibers crossing the surface should be known; 
this number is commonly expressed by employing a fiber 
orientation factor af as follows

f
f f

f

V
N

A
= a  (23)

It is well known that the fiber orientation factor can be 
affected by the member size because fiber orientations can 
be influenced by the boundary surface. Based on work by 
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Thus, using Eq. (18) and (20), the fiber stress at a crack 
considering the random distribution of the fiber inclination 
angle in a 3-D finite member can be calculated as
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(21)

Average fiber stress at crack considering fiber 
orientation and fiber embedment length

In addition to the random orientation of fibers, the 
randomness of the fiber embedment length should also be 
considered in the calculation of the average fiber stress at a 
crack. With the assumption that the probability for the fiber 

Fig. 15—Fiber inclination angle in 2-D: (a) surface area 
on sphere representing fiber angle; and (b) fiber inclination 
angle contribution to tension. Fig. 16—Fiber inclination angle in 3-D: (a) surface area 

on sphere representing fiber angle; and (b) fiber inclination 
angle contribution to tension.
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In a member with a rectangular cross section, the tensile 
stress provided by the fibers averaged through the cross 
section can be calculated as follows.

( ) ( ),3 , ,
1 , ,

cf f D f f cr avg cA
c

f y z V y z dA
A

= a s∫ (25b)

The tensile stress provided by fibers from the previous 
equation can be very useful for the realistic analysis of the 
uniaxial tensile behavior of FRC members with a rectangular 
cross section whose size is relatively small compared to the 
fiber length. Equation (25(b)) can be used for a 2-D element 
for which the thickness effect is only considered. The tensile 
stress of FRC can then be calculated from the sum of the 
tensile stresses provided by fibers and tension softening of 
the concrete matrix.

CONCLUSIONS
In this paper, the DEM was presented as an analysis 

procedure for evaluating the average tensile stress developed 
in fibers across a crack in FRC members subjected to 
tension. To derive the tensile stress of a single fiber 
at a crack, equilibrium and compatibility conditions 
were considered in the analysis of the pullout behavior 
of a single fiber embedded on both sides. The pullout 
characteristics associated with the two main anchorage 
mechanisms—frictional bond behavior and mechanical 
end-hook anchorage—were explicitly considered in the 
formulation. From the individual fiber stresses at a crack, 
the average tensile stress of fibers at a crack was derived 
by incorporating the randomness of fiber inclination angles 
and fiber embedment lengths. Because the distribution of 
fiber inclination angles can be affected by the boundary 
surfaces in finite-sized members, the probabilities for the 
fiber inclination angle were derived for three cases: 1) 3-D 
infinite elements; 2) 2-D finite thickness elements; and 
3) 3-D finite-sized elements with rectangular sections. 
Fiber orientation factors considering member dimensions 
were derived for these element types. Consequently, the 
average tensile stress carried by fibers can be calculated from 
the average tensile stress of fibers at a crack, the fiber 
orientation factor, and the fiber volumetric ratio. The 
total response of SFRC members can thus be calculated 
from the sum of the fiber tensile stresses and the concrete 
tension softening stresses. The proposed model can be 
useful for the realistic analysis of FRC elements subjected 
to tension. The details of verification studies and related 
discussions for the proposed analysis model are presented 
in an accompanying paper.21
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NOTATION
Ac, Af 	 = 	 cross-sectional areas of concrete matrix and fiber, respectively
Aq 	 = 	� area of surface describing possible fiber inclination angle 

on sphere
As 	 = 	� area of surface describing possible fiber inclination angle on 

sphere considering variation of fiber stress at crack
dc 	 = 	 distance from boundary surface in 2-D element
dcy, dcz 	 = 	� distances from boundary surface to y- and z-axis in 3-D 

element, respectively

Romualdi and Mandel,16 Soroushian and Lee17,18 presented 
a formulation for the average fiber orientation factor 
considering the effect of member size. In their work, a 
constant probability function was used for the variation of 
the angles between the fiber and two perpendicular axes 
that are parallel to the crack surface, respectively. On the 
other hand, Aveston and Kelly14 derived the fiber orientation 
factor with the assumption that the probability density for the 
fiber inclination angle should be a sine function in an infinite 
element. Several decades later, Li et al.15 and Stroeven19 also 
argued that the probability density for the fiber inclination 
angle should be variable, as Aveston and Kelly14 had 
suggested. Moreover, experimental results obtained by Gettu 
et al.20 indicated that the fiber orientation factor decreased 
from the boundary surface to the center of the cross section. 
This means that the variation of the fiber orientation factor 
along the cross section in 2-D or 3-D members should be 
taken into account to more reasonably evaluate the tensile 
stress provided by the fibers. Thus, in this section, a fiber 
orientation factor, which is variable along the section, will 
be derived considering the effect of member dimension 
following the approach of Aveston and Kelly.14

Because the number of fibers crossing the unit area of the 
crack surface is Ncosq for fibers aligned with an inclination 
angle q, Aveston and Kelly14 derived the fiber orientation factor 
in an infinite element, as given by the following equation.

2
0 cos sin 0.5f dpa = q q q =∫

 
(24a)

In the previous equation, sinq refers to the probability 
density, as illustrated in Fig. 13.

If the member size is relatively small compared with the fiber 
length, it should be considered that the fiber inclination angle 
will be significantly affected by the boundary surfaces. In the 
same manner as the procedure for calculating the average fiber 
stress at a crack (refer to Fig. 15 and 16), the fiber orientation 
factor considering the effect of member thickness in a 2-D 
member or the size of the rectangular section in a 3-D member 
can be expressed by the following equations, respectively.
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TENSILE STRESS CAPACITY  
PROVIDED BY FIBERS

The tensile stress capacity provided by fibers in a 3-D infinite 
member can easily be calculated from Eq. (23) and (24(a)), 
producing the following equation, because the fiber orientation 
factor is not affected by the variation of the crack width.

, ,f f f f cr avgf V= a s
(25a)
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df 	 = 	 fiber diameter
Ec, Ef 	 = 	 elastic modulus of concrete matrix and fiber,  
		  respectively
f c′ 	 = 	 concrete compressive strength
ff 	 = 	 tensile stress due to fibers for given crack width
la 	 = 	 fiber embedment length on shorter side
lf 	 = 	 fiber length
li 	 = 	� distance between mechanical anchorages for end-

hooked fiber
Kf 	 = 	� bond modulus, which is slope for elastic behavior 

in bond stress-slip relationship for fiber, of which 
inclination angle is 0 degrees

Nf 	 = 	 number of fibers crossing crack surface with unit area
Peh,long, Peh,short 	 = 	� tensile forces due to mechanical anchorage of longer 

and shorter embedded part of end-hooked fiber, 
respectively

Peh,max 	 = 	� maximum tensile force due to mechanical anchorage of  
end-hooked fiber

s  	 = 	 slip of fiber
seh 	 = 	 slip at Peh,max 
sf 	 = 	� slip at frictional bond strength for fiber with inclination 

angle of 0 degrees
sfq 	 = 	� slip at frictional bond strength for fiber with inclination 

angle of q
slong 	 = 	 slip at crack for longer embedded part of fiber
sshort 	 = 	 slip at crack for shorter embedded part of fiber
sx 	 = 	 slip between fiber and matrix at location x
Vf 	 = 	 fiber volumetric ratio
wcr 	 = 	 crack width
wp0 	 = 	� crack width at bond strength for fiber with inclination 

angle of 0 degrees
wpq 	 = 	� crack width at bond strength for fiber with inclination 

angle of q 
x 	 = 	 distance from a crack
y, z 	 = 	� locations to axes that are parallel to crack surface in 

cross section
af 	 = 	 fiber orientation factor
af,2D 	 = 	� local fiber orientation factor considering member thickness 

in 2-D element
af,3D 	 = 	� local fiber orientation factor considering member thickness 

and width in 3-D element
q 	 = 	� fiber inclination angle from axis that is perpendicular to 

crack surface
ql, qu 	 = 	� lower and upper limits for fiber inclination angle 

considering effect of boundary surface in 2-D element 
as presented in Fig. 15(a), respectively

qly, quy, qlz, quz 	 = 	� lower and upper limits for fiber angle from XZ or YZ 
planes considering effect of boundary surface in 3-D 
element as presented in Fig. 16(a), respectively

sf,cr 	 = 	� fiber stress at crack with given fiber inclination angle 
and embedment length

sf,cr,avg 	 = 	� average fiber stress at crack considering random distributions 
of fiber inclination angle and embedment length

sf,cr,exp 	 = 	 maximum experienced fiber stress at crack
sf,cr,q 	 = 	� fiber stress at crack averaged through variation of q for 

given length la 
sfu 	 = 	 ultimate tensile strength of fiber
tbx 	 = 	 bond stress between fiber and matrix at location x 
tf,max 	 = 	� frictional pullout strength for end-hooked fiber or 

straight fiber
teh,max 	 = 	 pullout strength of end-hooked fiber
tlong, tshort 	 = 	� frictional bond stress for longer or shorter embedded 

part of fiber, respectively


