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An analytical procedure is presented for the nonlinear analysis of
reinforced concrete frame structures consisting of beams, columns,
and shear walls under monotonic and pushover loads. The procedure
is capable of accurately representing shear-related mechanisms
coupled with flexural and axial behaviors. The formulation
described herein uses linear-elastic frame analysis algorithms in a
nonlinear mode based on an unbalanced force approach. Rigorous
nonlinear sectional analyses of concrete member cross sections,
using a distributed-nonlinearity fiber model, are performed based
on the disturbed stress field model. The proposed method is distinct
from existing methods in that it allows for the inherent and accurate
consideration of shear effects and significant second-order mecha-
nisms within a simple modeling process suitable for practical
applications. Decisions regarding the anticipated behavior and
failure mode or the selection of appropriate analysis options and
parameter values, or additional supporting calculations such as the
moment-axial force or shear force-shear deformation responses, are
not required.

Keywords: beam column; fiber model; frame structure; monotonic;
nonlinear analysis; pushover; reinforced concrete; retrofit; shear.

INTRODUCTION
The analysis and design procedures that have been

incorporated into modern design codes typically require
frame structures to be analyzed linear-elastically and
designed for ductile and flexure-critical behavior. Although
linear-elastic analyses cannot accurately predict all aspects
of structural behavior, such as redistribution of forces and
service load deformations, they are deemed sufficient if the
structure is designed for flexural behavior. There are numerous
analytical tools that can perform such an analysis and design
reasonably well. In some situations, however, it may be
necessary to analyze a shear-critical structure to more
accurately predict its behavior. Such an analysis may be
required for the safety assessment of existing structures that
were built 20 years ago or earlier based on practices
considered deficient today; damaged or deteriorated structures;
accurate assessment of large, atypical, or unique structures;
investigation of rational retrofit alternatives in structures
requiring rehabilitation; and forensic analyses in cases of
structural failure. Furthermore, modern building codes such
as IBC (2006) and FEMA 356 (2000) favor more accurate
procedures over traditional linear-elastic methods for a more
thorough analysis.

Such analyses can be performed using nonlinear analysis
procedures that typically require computer-based applications.
Most available applications for this purpose, however, such
as SAP2000® (CSI 2005), RUAUMOKO (Carr 2005) and
DRAIN-2DX (Prakash et al. 1993), ignore shear mechanisms
by default. If the structure being analyzed is in fact shear-
critical, severely unconservative estimates of both strength
and ductility are typically obtained. Unlike flexure-critical
structures, shear-critical structures fail in a much less
forgiving, brittle manner with little or no forewarning;

therefore, consideration of shear behavior is essential for
safe and realistic assessment of structural performance.

Some available computer tools for frame structures, such
as SAP2000, permit the consideration of shear behavior
through automatically generated shear hinges based on
simple formulas; however, there is typically insufficient
information available on the applicability of these formulas
to the frame being analyzed. As a result, grossly inaccurate
results for both strength and ductility predictions are
commonly obtained when using such generic or unknown
models for the shear behavior. On the other hand, some available
tools, such as RUAUMOKO, permit the analyst to define the
shear behavior manually through user-defined shear hinges.
Creation of this input, however, requires expert knowledge
on the shear behavior of concrete and usually takes
significant time and effort even when using other computer
programs for the shear calculations, which severely limits the
use of such procedures in practice. In addition, whether
considering shear behavior or not, the analyst is typically
required to select from a list of models and options appropriate
for the frame being analyzed. These may include material
models, such as the concrete tensile or compressive response
models, or nonlinear analysis options, such as large displacements
or hinge unloading methods. The selection of these options
tends to have a significant effect on the computed response
and may render the analytical results questionable if not
properly selected. This further limits the use of existing tools by
practicing structural engineers.

Consider, for example, a frame specimen tested by Duong
et al. (2007) involving a one-bay, two-story, shear-critical
frame. The frame was tested under a monotonically increasing
lateral load applied to the second-story beam and two
constant column loads applied to simulate the axial force effects
of higher stories. For analysis purposes, two software programs
were used: SAP2000 and RUAUMOKO. Both analyses were
performed with the use of only default options and models.
For modeling the hinges, the default moment and shear
hinges were used in the SAP2000 model, and the default
moment hinges, the only available option, were used in the
RUAUMOKO model. As seen in Fig. 1, highly contradictory
and inaccurate predictions were obtained for both strength
and ductility. SAP2000 underestimated the strength by 70%,
predicting a shear failure; RUAUMOKO overestimated it
by 25%, predicting a flexural failure. The RUAUMOKO
analysis did not provide any indication of the ultimate
displacement; the analysis carried on sustaining the ultimate
load based on the elastic-plastic hinge behavior. SAP2000,
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on the other hand, predicted an erroneous 4.0 mm (0.16 in.)
failure displacement. The actual failure displacement in the
test was expected to be only slightly more than the 44.8 mm
(1.76 in.) attained (Duong et al. 2007). More details of these
analyses are provided by Guner (2008).

This current study is concerned with the development and
verification of an analytical method for the nonlinear analysis
of frame-related structures with particular emphasis on
shear-related mechanisms. A frame analysis program,
VecTor5, based on predecessor program TEMPEST
(Vecchio 1987; Vecchio and Collins 1988), was developed
for accurate simulations under monotonic and pushover
loading conditions. The procedure is distinct from others in
its inherent and accurate consideration of shear effects and
significant second-order mechanisms within a simple
modeling process suitable for use by practicing structural
engineers. Decisions regarding the expected behavior and
failure mode or selection of appropriate values for multiple
parameters and options are not required prior to the analyses,
nor are additional supporting calculations such as moment-
axial force, moment-curvature, or shear force-shear deforma-
tion responses of the cross sections.

RESEARCH SIGNIFICANCE
Although modern design codes typically require frame

structures to be designed for ductile behavior, situations
often arise in practice where shear-related mechanisms play
a significant role. Currently available analytical tools either
ignore shear mechanisms altogether, employ unclear or
overly simplistic formulations, or are overly complex,
requiring the selection of numerous analysis options and
input of supporting calculations prior to the analysis. Most
neglect shear deformations by default. Thus, improved
analytical tools are much needed. This study describes a
nonlinear analysis procedure for plane frames that provides
a comprehensive and accurate assessment of shear effects—
one that does not require precalculation of interaction
responses or failure modes, nor the selection of a confusing
array of analysis options and material models.

OVERVIEW OF PROPOSED 
ANALYTICAL PROCEDURE

The analytical procedure proposed is based on a total load,
iterative, secant stiffness formulation. The computer-based
calculation procedure consists of two interrelated analyses.
First, a linear-elastic global frame analysis, using a classical
stiffness-based finite element formulation, is performed to
obtain member deformations. Using the calculated
deformations, nonlinear sectional analyses are performed to
determine the sectional member forces, based on a
distributed-nonlinearity fiber approach. The differences
between the global and sectional forces are termed the

“unbalanced forces,” which are added to the “compatibility
restoring forces” (that is, virtual static loads) to force member
deformations in the global frame analysis to match those in
the nonlinear sectional analysis. The compatibility restoring
forces are applied to the ends of each member in a self-
equilibrating manner. The global frame analysis and the
sectional analyses are performed iteratively, resulting in a
double-iterative procedure, until all unbalanced forces converge
to zero. In all calculations, the initial transformed cross-
sectional area At and moment of inertia It are used together
with the initial tangent Young’s modulus of concrete Et. The
procedure allows the analysis of frames with unusual or
complex cross sections under a wide range of static and thermal
load conditions. Nonlinear thermal analysis calculations
were adopted from the predecessor procedure TEMPEST.

To analyze a structure with the proposed analytical procedure,
a global model of the structure must first be created by
dividing frame elements (that is, beams, columns, and shear
walls) into a number of members (that is, segments). All
mechanical and thermal forces acting on the structure, as
well as support conditions, must be defined as shown in Fig. 2.
Unlike lumped-nonlinearity frame elements with plastic
hinges located at each end, the frame element proposed is
based on a distributed-nonlinearity fiber model where
nonlinear behavior is monitored at each member using
average member forces. Therefore, reasonably short
members should be used in the model to adequately capture
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Fig. 1—Comparison of load-deflection responses for Duong
et al. (2007) frame.

Fig. 2—Creation of global frame model: (a) structure and
loading; and (b) global frame model.
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the nonlinear behavior. For optimal accuracy, the recom-
mended member length is in the range of 50% of the cross
section depth for beam and column members and 10% of the
cross section depth for shear wall members. A more detailed
description of the modeling and analysis process is provided
by Guner and Vecchio (2008) and Guner (2008).

A layered (fiber) analysis technique is employed for the
nonlinear sectional analyses; therefore, a sectional model of
each cross section used in the frame model must be created
by dividing the cross section into a number of concrete
layers, longitudinal reinforcing bar layers, and longitudinal
prestressing steel layers. A sectional model and the material
properties required for the input are shown in Fig. 3, where
fc′  is the concrete compressive strength; ρti and ρzi are the
transverse and out-of-plane reinforcement ratios, respectively;
Sti is the spacing of the transverse reinforcement in the
longitudinal direction; fyti and futi are the yield and ultimate
stresses of the transverse reinforcement, respectively; Esti
and Eshti are the Young’s and the strain hardening moduli of
the transverse reinforcement, respectively; εshti is the strain
at the onset of strain hardening; Asj is the total cross-sectional
area of the longitudinal reinforcement or prestressing steel
layer; and Δεpj is the locked-in strain differential for the
prestressing steel layer.

At the end of the analysis, the procedure provides sufficient
output to fully describe the behavior of the structure,
including the load-deflection response, member deformations
and deflections, concrete crack widths, reinforcement
stresses and strains, deficient parts and members (if any),
and failure mode and failure displacement of the structure.
The postpeak response of the structure is also provided,
through which the energy dissipation and the displacement
ductility can be calculated.

BASIC ANALYSIS STEPS
1. The procedure starts with adding current compatibility

restoring forces to the fixed-end forces due to applied
mechanical loads. In the first iteration of the first load stage,
the compatibility restoring forces are taken as zero.

2. A linear-elastic frame analysis of the structure is
performed to determine the joint displacements, joint
reactions, and member end-actions. Using appropriate end
factors, the average internal forces of each member (that is,
Nk, Mk, and Vk) are determined. The geometry of the structure
is updated based on the joint displacements computed.

3. The axial and shear strain distributions through the
depth of each member are determined.

4. Nonlinear sectional analysis iterations are performed for
each member to calculate the sectional forces, that is, Nsec k,
Msec k, and Vsec k.

5. The unbalanced forces (that is, the differences between
the global and sectional forces) are calculated for each
member. These unbalanced forces are added to the
compatibility restoring forces to be applied to the structure.

6. The aforementioned calculations are repeated until all
unbalanced forces become zero or the maximum number of
iterations is reached.

To illustrate the concept of unbalanced forces, the
response of a member to an applied moment Ma in the first
two iterations is shown in Fig. 4. For Ma and curvature φL1,
calculated from the linear-elastic global frame analysis,
nonlinear sectional moment is calculated as MN1 in the first
iteration (arrows 1 to 3 in Fig. 4). The difference between
Ma and MN1 is the unbalanced moment MU1, which is added
to the compatibility restoring force (MR1 = 0 + MU1) to be
applied to the member as ML2 = Ma + MR1 to find MN2.
Notice how the unbalanced moment (MU2 = Ma – MN2)
reduces while the compatibility restoring force (MR2 = MU1 +
MU2) increase. The procedure is continued in this manner
until MN becomes equal to Ma.

LINEAR-ELASTIC GLOBAL FRAME ANALYSIS
A typical frame member is shown in Fig. 5, relative to the

member-oriented local coordinate system axes xm, ym, and
zm. A flowchart indicating the major steps in the global
frame analysis procedure is presented in Fig. 6.

Fig. 3—Creation of sectional model: (a) cross section; and
(b) sectional model.

Fig. 4—Unbalanced force approach.

Fig. 5—Frame member: (a) degrees-of-freedom in member-
oriented axes; and (b) global axes.



ACI Structural Journal/January-February 201066

Shear protection algorithm
In the analysis of frames that are typically modeled

accordingly to centerline dimensions, experience has shown
that D-regions (that is, “disturbed” regions where strain
distributions are significantly nonlinear) are vulnerable to
premature shear failures near concentrated loads, corners,
and supports. Therefore, a “shear protection” algorithm was
introduced into the proposed procedure to approximately
account for the increased strength of D-regions. This
algorithm first detects the joints of frames (beam and column
connection nodes), the point load application points, and the
supports. It then determines all members that fall within the
distance of 0.7 × hs from such joints, as defined by CSA
A23.3-04 Clause 11.3, where hs is the cross-section
depth. Finally, the shear forces acting on those members
are reduced, when calculating shear strains, to prevent
premature failures. More details of this implementation
are provided by Guner (2008). 

Shear compatibility strain
A shear compatibility strain γltc is calculated for each

member as defined by

(1)

In Eq. (1), γltc is the shear compatibility strain to be used
in the current global frame analysis iteration, γltc

pre  is the

shear compatibility strain of the previous global frame analysis
iteration, VUN is the unbalanced shear force, Gc is the elastic
shear modulus as defined by Eq. (2), and At is the transformed
cross-sectional area. A shear area factor of 1.15 is assumed
in Eq. (1) for general cross sections.

(2)

In Eq. (2), Ec is the initial tangent modulus of elasticity of
concrete, and ν is Poisson’s ratio, which is initially assumed
to be 0.15.

Compatibility restoring forces
The axial, moment, and shear compatibility restoring

forces are determined for each frame member as follows

NR = NR
pre + NUN (3)

MR = MR
pre + MUN (4)

(5)

In Eq. (3) to (5), NR
pre and MR

pre are the axial and moment
compatibility restoring forces from the previous global

γltc γltc
pre 1.15

VUN

Gc At×
-----------------×+=

Gc
Ec

2 1 ν+( )×
--------------------------=

VR γltc
12 Ec It××

Lk
2

---------------------------×=

Fig. 6—Flowchart for global frame analysis.
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frame analysis iteration, respectively; NUN and MUN are the
unbalanced axial force and bending moment, respectively; It
is the transformed moment of inertia of the cross section; and
Lk is the length of the member. The calculated compatibility
restoring forces are applied to the relevant members, as
shown in Fig. 7. Note that the moment VR × Lk/2 caused
by the shear compatibility restoring force is added to
satisfy equilibrium.

Joint displacements, reactions,
and member end-actions

A load vector {p}, consisting of fixed-end forces due to
applied mechanical loads and compatibility restoring forces,
is assembled. Using the classical stiffness-based finite
element formulation, a structural stiffness matrix [k] is
created and assembled based on the procedure described by
Weaver and Gere (1990). The joint displacements {u} are then
determined based on Eq. (6). Using the calculated nodal
displacements, updated nodal coordinates are determined, and
new member lengths and direction cosines are calculated.
This update is performed to consider geometric nonlinearity.
Support reactions and member end-actions relative to the
elemental axes are finally calculated.

{u} = [k]–1 × {p} (6)

Fixed-end forces due to dowel resistance
The dowel resistance provided by the reinforcing bars may

be significant in some cases, for example, in beams or
columns with low percentages of shear reinforcement.
Dowel action is taken into account for each member through
the introduction of resisting fixed-end moments. The dowel
force is calculated by taking the stiffness portion of the
dowel force-dowel displacement formulation proposed by
He and Kwan (2001). Details of this implementation are
described in Guner (2008).

End factors and average member forces
End factors are used to average the end actions of

members to determine one average axial force, shear force,
and bending moment value for each member. To account for
a possible concentration of deformations at one particular
end, the end with higher actions is typically given a higher
weighting in this averaging process. Consequently, the end
factors for axial force and bending moment, initially taken as
0.5 for both ends, is gradually changed to 0.75 and 0.25,
depending on the acting compressive strain. For cracked
members, the end factors for bending moment and axial
force are always set to 0.75 and 0.25. For averaging the shear
force, end factors of 0.5 are used for all members.

Unbalanced forces
Unbalanced forces are the differences between member

forces calculated by the global frame analysis and those
obtained from the nonlinear sectional analysis, as follows

NUN k = Nk – Nsec k (7)

MUN k = Mk – Msec k (8)

VUN k = Vk – Vsec k (9)

Convergence factors
Convergence factors are needed at the end of each global

frame analysis to determine the validity of the analysis
results and whether to move on to the next load or time stage.
The default criterion is based on the weighted displacements.
Details of the formulation can be found in Guner (2008).

Ruptured reinforcement
All reinforcement strains are checked with their rupture

strains to determine bar fractures. If a bar fracture is
encountered, the stress in that bar is taken as zero for all
subsequent load stages.

Shear failure check
In the analyses of shear-critical structures with significant

flexural influences, it may occur that, after the shear capacity
of one of the members is reached, significant unbalanced
shear forces remain present at the end of each load stage
instead of ideally being zero. This phenomenon is closely
related to the maximum number of global frame analysis
iterations permitted because the specified convergence is not
usually achieved before the maximum number of iterations
is reached in such situations. To deal with this anomaly, a
“shear failure check” was introduced into the analytical
procedure proposed. If there exists an unbalanced shear
force on a member greater than a certain percentage of the
acting shear force at the end of more than one load stage, that
member is intentionally failed by reducing its moment of
inertia to zero. The frame, however, may still continue to
carry load based on the conditions of the other members.
This percentage was conservatively selected to be 25%
based on a parametric study. Other values can also be used
because the increasing unbalanced shear force will reach the
specified percentage within a limited number of load stages.
This check was introduced to provide conservative estimates
of the post-peak ductilities of shear-critical structures. More
details of this implementation are provided by Guner (2008).

NONLINEAR SECTIONAL ANALYSES
Sectional analyses are performed to determine the

nonlinear response of each cross section to imposed sectional
deformations. Using a layered (fiber) analysis technique,
each concrete and steel layer is analyzed individually based
on the disturbed stress field model (DSFM) (Vecchio 2000),
although sectional compatibility and sectional equilibrium
conditions are satisfied as a whole. The main sectional
compatibility requirement enforced is that “plane sections
remain plane,” which permits the calculation of the longitudinal
strain in each layer of concrete, reinforcing, and prestressing
steel layer as a function of the top and bottom fiber strains,
as shown in Fig. 8. Based on this assumption, the axial
strains at the middepths of the members are calculated as
defined in Eq. (10). The curvatures of the members are

Fig. 7—Compatibility restoring forces in member-oriented
axes.
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calculated from the two end rotations, ϕl and ϕm, and the
updated member lengths Lk as defined by Eq. (11).

(10)

(11)

(12)

(13)

It is further assumed that the longitudinal strains in each layer
are uniform and equal to the strains at the center of the layer, as
shown in Fig. 8. The sectional equilibrium requirements include
balancing the axial force, shear force, and bending moment that
are calculated by the global frame analysis.

The clamping stresses in the transverse direction are
assumed to be zero in the sectional calculations. It is known,
however, that high transverse stresses are present at locations
where the load is introduced or where a support is present.
These stresses locally increase the strength of the member,
thereby requiring sectional analyses to be performed at a
distance away from the load or support, otherwise producing
overly conservative predictions. In the analytical procedure
proposed, this phenomenon is approximately accounted for
by the “shear protection algorithm,” as described previously.

As for the consideration of shear, there are two different
approaches available: shear-stress-based analyses based on a
uniform shear flow distribution, and shear-strain-based
analyses based on either a uniform or parabolic shear strain
distribution. By default, the shear-strain-based analysis with
parabolic distribution, as shown in Fig. 8, is selected due to
its ability to continue an analysis into the post-peak regime
(essential for ductility predictions) and its fast and numerically
stable execution. This is the approach adopted in the
formulations to follow; refer to Guner (2008) for descriptions
of the other approaches.

Calculation of longitudinal reinforcement ratios for 
sectional calculations

In the application of the DSFM to the sectional analyses,
smeared reinforcement ratios must be defined for each
concrete layer to form the composite material stiffness

εcl
Lk Lpre

k–

Lpre
k

-----------------------=

φ
ϕl ϕm+

Lk

------------------=

εx top,

εcl
hs

2
---- φ×–=

εx bot,

εcl
hs

2
---- φ×+=

matrix; therefore, the longitudinal reinforcing or prestressing
bar layers defined for each cross section must be smeared to
concrete layers. For this purpose, the bar layers are assumed to
be smeared in a tributary area of 7.5 times the bar diameters on
both sides of the bars, as suggested by CEB-FIP (1990). The
resulting reinforcement ratio is used in the sectional analyses
when analyzing the related concrete layer.

Average crack spacings
A reasonable estimate of the average crack spacing is

needed for crack slip calculations. In the analytical procedure
proposed, a variable crack spacing formulation is adapted
from Collins and Mitchell (1991). In contrast to the constant
crack spacing, the variable crack spacing model considers
the fact that the crack spacing becomes larger as the distance
from the reinforcement increases. As a result, each concrete
layer may have different crack spacings in the longitudinal
and transverse directions based on the reinforcement quantity
and configuration. Calculation details of this implementation
are found in Guner (2008).

Shear-strain-based layer analysis
The purpose of the shear-strain-based layer analysis is to

calculate the longitudinal stress σx and shear stress τxy of
each concrete layer.

Consider a single concrete layer that has a certain
percentage of longitudinal and transverse reinforcement (for
example, Fig. 8, shaded layer). To calculate the principal
strains in this layer, εy must be determined; εx and γxy are
known from the global analysis. Any value can be assumed
for εy to start the iterative calculation process. The net principal
strains, εc1 and εc2, and the orientation of stress field θ can
be calculated from a Mohr’s circle of strain. The corresponding
principal stresses, fc1 and fc2, are calculated based on the
constitutive relationships of the DSFM.

The concrete material secant moduli are then calculated
based on Fig. 9(a) as follows

(14)

(15)

(16)

In Fig. 9(a), εc is the concrete net strain (that is, the strain
that causes stress); εc

o is the concrete elastic offset strain due
to lateral expansion, thermal, shrinkage and prestrain effects;
εc

p is the concrete plastic offset strain due to cyclic loading
and damage; and εc

s is the concrete crack slip offset strain
due to shear slip.

As the DSFM considers reinforced concrete as an orthotropic
material in the principal stress directions, it is necessary to
formulate the concrete material stiffness matrix [Dc]′ relative to
those directions as follows

Ec1
fc1

εc1

-------=

Ec2
fc2

εc2

-------=

Gc
Ec1 Ec2×

Ec1 Ec2+
----------------------=

Fig. 8—Longitudinal and shear strain distribution across
cross section depth hs.
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(17)

The concrete material stiffness matrix can then be
transformed to the global axes as follows

(18)

[Dc] = [Tc]
T × [Dc]′ × [Tc] (19)

Reinforcement secant moduli are calculated based on
Fig. 9(b) as follows

(20)

(21)

In Fig. 9(b), εs is the reinforcement net strain (that is, the
strain that causes stress); εs

o is the reinforcement elastic
offset strain due to thermal and prestrain effects; εs

p is the
reinforcement plastic offset strain due to cyclic loading and
yielding; and fs is the reinforcement stress calculated by
Eq. (35) to (38).

Because the reinforcement components lie in two orthogonal
directions, the global x and y axes, the reinforcement stiffness
matrix becomes as shown as follows

(22)

The resulting composite material stiffness matrix is
calculated as

[D] = [Dc] + [Ds] (23)

Dc[ ]′
Ec1 0 0

0 Ec2 0

0 0 Gc

=

Tc[ ]

cos2
θ sin2

θ θcos sinθ

sin2
θ cos2

θ θcos– sinθ

2 θcos sinθ   – 2 θcos sinθ   cos2
θ sin2

θ–

=

Esx
fsx

εsx

------=

Esy
fsy

εsy

------=

Ds[ ]
ρx Esx× 0 0

0 ρy Esy× 0

0 0 0

=

The layer stresses can then be found as

[σ] = [D] × [ε] – [σo] (24)

In Eq. (24), both the [D] matrix and the [ε] vector are
based on total strains, necessitating the deduction of [σo], a
pseudo stress matrix arising from the strain offsets shown in
Fig. 9.

(25)

(26)

(27)

The layer stresses can then be calculated as follows

(28)

Taking advantage of the assumption that there is no
clamping stress in the transverse direction, Eq. (28) can be
expanded as

σy = D21 × εx + D22 × εy + D23 × γxy – S02 = 0 (29)

This assumption permits the calculation of the total strain
in the transverse direction, which is the basic unknown of
the procedure.

(30)

Using the calculated εy value, the new principal stresses
( fc1 and fc2) are determined from the corresponding principal
strains (εc1 and εc2) using the DSFM constitutive models;
the aforementioned calculations are repeated until the εy
value converges or the specified maximum number of
iterations is reached (100 iterations by default). At the
conclusion of these calculations, the required stress values are
calculated as follows

σo[ ] σc
o[ ] σs

o[ ]r

r 1=

2

∑+
S01

S02

S03

= =

σc
o

[ ] Dc[ ] εc
o

[ ] εc
p

[ ] εc
s

[ ]+ +( )×= =

Dc[ ]

εcx
o

εcy
o

γcxy
o

εcx
p

εcy
p

γcxy
p

εcx
s

εcy
s

γcxy
s

+ +

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

×

σs
o[ ]r

r 1=

2

∑ Ds[ ] εs
o[ ] εs

p[ ]+( )r×
r 1=

2

∑= =

Ds[ ]
εsx

o εsx
p+

0

0

× Ds[ ]

0

εsy
o εsy

p+

0

×+

σx

σy

τxy

D11 D12 D13

D21 D22 D23

D31 D32 D33

εx

εy

γxy

×
S01

S02

S03

–=

εy
D21 εx D23 γxy S02+×–×–

D22

----------------------------------------------------------------=

Fig. 9—Determination of secant moduli: (a) concrete; and
(b) reinforcement.
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σx = D11 × εx + D12 × εy + D13 × γxy – S01 (31)

τxy = D31 × εx + D32 × εy + D33 × γxy – S03 (32)

Reinforcement response
The reinforcement response must be superimposed on the

concrete response to obtain the resultant nonlinear sectional
forces, which require the determination of net reinforcement
strains. In the most general case, the total longitudinal
reinforcement strain εsj is composed of net strain εj

net (that
is, the strain that causes stress), prestrain offset strains Δεpj
due to prestressing, elastic offset strains εsj

th due to thermal
effects, and plastic offset strains εsj

p due to cyclic loading
and yielding. The resulting strain becomes

εsj = εj
net – Δεpj + εsj

th + εsj
p (33)

The total strain εsj for each reinforcing or prestressing steel
layer is determined from the longitudinal strain distribution
given in Fig. 8. In this calculation, the strain values
corresponding to the center of the bar are considered.

As for the transverse reinforcement, the total strain εyi is
similarly decomposed into its components except that no
prestrains are considered, as defined as follows

εyi = εyi
net + εyi

th + εyi
p (34)

In Eq. (34), subscript i refers to the concrete layer number as
the transverse reinforcement is smeared into concrete layers.

After determining the net strains for the reinforcement
components, the reinforcement responses, whether in the
longitudinal (x) or transverse (y) directions in compression or
in tension, is calculated by a trilinear relationship as shown in
Fig. 10, with corresponding stresses defined as follows

fs = Es × εs    for 0 ≤ εs < εy (35)

fs = fy    for εy ≤ εs ≤ εsh (36)

fs = fy + Esh × (εs – εsh)   for εsh < εs < εu (37)

fs = 0    for εs ≥ εu (38)

In Eq. (35) to (38), fs is the stress, fy is the yield stress, fu
is the ultimate stress, εs is the net strain, εy is the yield strain,
εsh is the strain at the onset of strain hardening, and εu is the
ultimate strain of the reinforcement.

Local crack calculations
The consideration of local crack conditions is an essential

component of the procedure. These calculations are
performed to make sure that the average concrete stresses
can be transmitted across cracks by the reserve capacity of
the reinforcement. In addition, the shear stresses vci developed
at the crack interface are calculated for each concrete layer
to determine the magnitude of the shear slip along the crack
surfaces. The local crack calculations are performed within
each sectional analysis iteration for each concrete layer using
the formulations of the DSFM as described by Vecchio
(2000). A detailed description of the adaptation into the
frame analysis algorithm is provided by Guner (2008).

Resultant sectional member forces
After determining both the concrete and reinforcement

responses, the resultant sectional forces are obtained by
superposition as shown below, where ncl is the total number
of concrete layers and nsl is the total number of reinforcing
and prestressing steel layers.

(39)

(40)

(41)

The calculated forces are returned to the global frame
analysis algorithm, where they are checked with the member
forces obtained from the global frame analysis to determine
the unbalanced forces. The objective of the global frame
analysis is to reduce all unbalanced forces to zero before
proceeding to a new load or time stage.

ADDITIONAL CONSIDERATIONS
Concrete dilatation (Poisson’s effect)

Under biaxial stress conditions, it is common to assume
that Poisson’s effects are negligible for cracked concrete. If
the concrete is uncracked or if the tensile straining in the
cracked concrete is relatively small, however, the lateral
expansion of concrete due to Poisson’s effects can account
for a significant portion of the total strains, requiring these
effects to be taken into account. Due to internal micro-
cracking, Poisson’s ratio increases as the acting compressive
stress increases, causing concrete expansion to accelerate.
When confined by transverse or out-of-plane reinforcement,
the lateral expansion results in passive confining stresses that
considerably improve the strength and ductility of the
reinforced concrete under compression. This phenomenon is
taken into account in the sectional analyses of the proposed
procedure as concrete elastic offset strains εc

o based on the
lateral expansion model of Kupfer et al. (1969). Details of
these calculations are provided by Guner (2008).

Concrete prestrains
Concrete prestrains, such as shrinkage strains εsh, are also

considered as a loading and can be assigned to desired

N ksec σxi bi hi fsxj Asj×
j 1=

nsl

∑+××
i 1=

ncl

∑=

M ksec σxi bi hi yci× fsxj Asj ysj××
j 1=

nsl

∑+××
i 1=

ncl

∑=

V ksec τxy bi hi××
i 1=

ncl

∑=

Fig. 10—Trilinear stress-strain relationship for reinforcement.
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members. These prestrains are treated as elastic concrete
offsets (that is, εcx

o = εsh and εcy
o = εsh, while γcxy

o = 0) and
are included in the sectional analyses.

Out-of-plane (confinement) reinforcement
Lateral expansion causes passive confining pressures in

the transverse and out-of-plane reinforcement, which may
considerably improve the strength and ductility of the
concrete. In the analytical procedure proposed, the stress in
the transverse reinforcement due to lateral expansion is
inherently taken into account by the use of concrete elastic
offset strains, as formulated previously. Stresses in the
out-of-plane reinforcement are calculated separately in the
sectional analyses. The calculated confining stress is taken
into account to enhance the concrete compressive response,
as described in Guner (2008).

SUMMARY AND CONCLUSIONS
Although modern design codes typically require reinforced

concrete frames to be designed for ductile and flexure-critical
behavior, situations often arise in practice where shear-related
mechanisms play a significant role in structural response.
Omission of shear effects for such structures typically results
in severely unconservative and unsafe calculation of strength
and ductility. Most available tools, however, either ignore
shear mechanisms altogether, employ unclear or overly
simplistic formulations, or require complex precalculation of
shear hinge properties using separate software, as well as
selection of numerous analysis options and parameter values.

A computer-based analytical procedure, VecTor5, has
been developed for the nonlinear analysis of frame-related
structures consisting of beams, columns, and shear walls,
under monotonic and pushover loads. Based on the disturbed
stress field model (DSFM), the procedure is capable of
capturing shear-related effects coupled with flexural and axial
behaviors. The proposed procedure is based on two interrelated
analyses, using an iterative total load, secant stiffness
formulation. A classical stiffness-based linear-elastic frame
analysis is performed as the main framework of the procedure.
Rigorous sectional analyses of concrete member cross
sections are then undertaken, using a distributed-nonlinearity
fiber model and the constitutive relations of the DSFM. The
computed responses are then enforced with the use of an
unbalanced force approach, where the unbalanced forces are
reduced to zero in an iterative process. The procedure allows
for the analysis of frames with unusual or complex cross
sections under a large range of static and thermal load conditions.
The formulations presented herein can be incorporated into most
linear-elastic frame analysis procedures.

The procedure is capable of considering significant second-
order effects such as material and geometric nonlinearities,
time- and temperature-related effects, membrane action,
nonlinear degradation of concrete and reinforcement at
elevated temperatures, concrete compression softening,
tension stiffening and tension softening, shear slip along
crack surfaces, nonlinear concrete expansion, confinement
effects, previous loading history, effects of slip distortions
on element compatibility relations, concrete prestrains, and
reinforcement dowel action. Furthermore, new or improved
formulations can be adopted as they become available.
Currently, however, the procedure does not account for
reinforcement bond slip and compression bar buckling
mechanisms. Furthermore, as is typical in frame analysis of
this type, the procedure uses centerline dimensions of cross

sections together with stiffened joint panel zone members.
Therefore, failure modes involving beam-column panel
zones cannot be captured. A nonlinear member type should
be developed for beam-column joints to further improve the
capabilities of the proposed procedure. Future work will be
directed toward addressing these limitations.

The advantage of the proposed method over others is its
inherent and accurate consideration of shear-related
mechanisms within a simple modeling process suitable for
practical applications. Unlike other methods, decisions
regarding the expected behavior and failure mode, or selection
of appropriate analysis options and parameter values, are not
required in the modeling process prior to the analysis, nor are
additional calculations, such as the moment-axial force,
moment-curvature, or shear force-shear deformation
responses of the cross sections. Furthermore, the procedure
exhibits excellent convergence and numerical stability
characteristics, requiring little computational time, as
demonstrated in a companion paper (Guner and Vecchio
2010) through verification and application studies.
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capacity of a single FRP stirrup6-8 when tested according to
either B.5 or B.12 test methods.12 It was interesting in the
study, however, to check if the shear strength or the design
capacity of the beam specimens was governed by the
reduced bend strength. This required determining the stress
at the bend location corresponding to the design limits of the
straight portions of the FRP stirrups. Furthermore, it has also
been established that the closer the spacing, the higher the
possibility for the shear crack to intersect with an FRP stirrup
at the bend zone,7 which is the worst-case scenario. Therefore, the
effective stress in the FRP stirrups is calculated based on this
simple equation (Eq. (18)) considering the experimentally
measured values for Vcr.

Shear predictions—Response-2000 software,22 which is
based on the modified compression field theory (MCFT),
allows analysis of beams and columns subjected to arbitrary
combinations of axial loads, moments, and shear. It also
includes a method to integrate the sectional behavior for
simple prismatic beam segments.22 The program is based on

assumptions that plane sections remain plane and that there
is no transverse clamping stress across the depth of the beam.
Bentz22 proved that the Repsonse-2000 software (which is
based on the MCFT) is capable of predicting the full
response of steel-reinforced concrete members under any
arbitrary combinations of moment and shear. Therefore, the
main objective of this analysis was to evaluate the applicability of
using this model to predict the full member response when
FRP stirrups were used as shear reinforcement. Unlike the
steel stirrups, however, the FRP stirrups have two different
values for the strength: straight portion and bent zone. Thus,
it was necessary to investigate how these specific tensile
characteristics of the FRP stirrups would be employed in this
analytical model. The analysis showed that the
Response-2000 was capable of adequately predicting the
failure and the average stirrup strain; however, it was not
able to reasonably predict the shear crack widths. Therefore,
the main objective of this part of the research was achieved
through the presented results and discussions. Any more
inquiries, however, may need further study.
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Pushover Analysis of Shear-Critical Frames: Formulation. Paper by Serhan Guner and Frank J. Vecchio

Discussion by Andor Windisch
ACI member, PhD, Karlsfeld, Germany

The paper promises a nonlinear analysis procedure for plane
frames that should provide a comprehensive and accurate
assessment of shear effects, a procedure that does not require
precalculation of interaction responses or failure modes nor
the selection of a confusing array of analysis options and
material models. The reader is confronted with many legends,
lists, and flowcharts of analysis and references to the paper
(Guner 2008).

OVERVIEW OF PROPOSED
ANALYTICAL PROCEDURE

A nonlinear analysis procedure is common; nevertheless,
its correctness depends very much on the initial assumptions.
The frame elements proposed are based on a distributed-
nonlinearity fiber model.

Figure 3(b) refers to the creation of the sectional model.
As stated in the paper: “The longitudinal reinforcing layers
are smeared to concrete layers. For this purpose, the bar
layers are assumed to be smeared in a tributary area of 7.5 times
the bar diameters on both sides of the bars.” Referring to the
longitudinal strain distribution shown in Fig. 8, this means
that for a given bending moment, different longitudinal
strains will be calculated as it would develop if the longitudinal
reinforcement were not smeared.

Shear protection algorithm
The authors correctly point out that “experience has shown

that D-regions are vulnerable to premature shear failures.”
Nevertheless, in the subsequent sentences, clear contradictions
can be found: “Therefore, a ‘shear protection’ algorithm was
introduced into the proposed procedure to approximately
account for the increased strength of D-regions. It then
determines all members that fall within the distance of 0.7 × hs
from such joints. Finally, the shear forces acting on those
members are reduced, when calculating shear strains, to

prevent premature failures.” If the corners and neighboring
sections are vulnerable to shear, then why suppress the
algorithm to just these failures, hence, distorting the model of
the correct behavior of the frame? Any curvature and distortion
around the corner would quite substantially influence the
midspan deflection. Please clarify.

NONLINEAR SECTIONAL ANALYSES
The shear-strain-based analysis with parabolic shear strain

distribution might produce numerical stability; nevertheless,
it is not valid in the pre-peak or post-peak regime.

Average crack spacings
The paper states: “In contrast to the constant crack

spacing, the variable crack spacing model considers the fact
that the crack spacing becomes larger as the distance from
the reinforcement increases. As a result, each concrete layer
may have different crack spacings in the longitudinal and
transverse directions…” Regarding the 30 to 40 layers in one
cross section and the aleatoric longitudinal strain distribution,
any “strong correlation” with the measured crack width
found must be questioned.

Shear-strain-based layer analysis
The paper states: “To calculate the principal strains in this

layer, εy must be determined; any value can be assumed for
εy to start the iterative calculation process.” Which assumptions
should εy fulfill? No equations, no boundary conditions, and no
continuity requirements exist at the nodes? A possible way
out is the “specified maximum number of iterations
(100 iterations by default).” Please clarify.

The analysis makes use of the constitutive relationships of
the disturbed stress field model (DSFM). The fundamental
enhancement of DSFM compared to modified compression
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field theory (MCFT) is the splitting (“decomposition”) of the
concrete total strains into net concrete strains and concrete
crack slip strains. The concrete crack slip primarily
depends—besides the cube strength and the maximum
aggregate size—on the average crack width. The user of the
procedure must reasonably estimate the average crack
spacing, which changes during the loading procedure. How
can the user do this? It may be as demanding as generating
shear hinges required by other methods criticized by the
authors. How many different assumptions and procedures
should the designer carry out in order to find the “best”
reliable result? How are the concrete crack slips of different
layers compatible with the compatibility requirement of
“plane sections remain plain”?

Reinforcement response
The paper states: “The total strain εsj for each reinforcing

or prestressing steel layer is determined from the longitudinal
strain distribution given in Fig. 8. In this calculation, the
strain values corresponding to the center of the bar are
considered.” During the smearing of the reinforcing or
prestressing steel, the center of gravity of the reinforcing or
prestressing layers do not coincide with the actual positions
of the reinforcing or prestressing steels (refer to Fig. 3 and 8).
A quite serious discrepancy is generated at the very beginning of
the tedious calculation process. Please clarify.

SUMMARY AND CONCLUSIONS
The presented analytical procedure promises a great deal.

Fundamental assumptions—for example, the smeared
longitudinal reinforcement ratios and the unclear method
of determining the transverse strain εy—are questionable.
The consideration of shear-related mechanisms—for
example, parabolic shear strain distribution—is neither
inherent nor accurate for a nonlinear analysis. The authors
are encouraged to solve the additional important open problems
listed in this paper—for example, beam-column zones and those
not mentioned herein, such as shear force reduction in
the end-zone members.

AUTHORS’ CLOSURE
Closure to discussion by Windisch

The authors would like to thank the discusser for his interest in
the paper and for providing the authors an opportunity to elaborate
on points requiring further clarification. In the following sections,
the authors will attempt to address the issues raised.

LINEAR-ELASTIC GLOBAL FRAME ANALYSIS
Shear protection algorithm

In a frame structure, frame members typically exhibit
increased shear strengths in D-regions such as concentrated
load application areas, support zones, and joints. This is
primarily caused by the beneficial effects of clamping
stresses and by direct strut action in the concrete. Both
mechanisms are typically neglected in sectional analysis
procedures, including the proposed one. If such regions are
analyzed by a sectional method, overly conservative shear
failure loads—that is, premature shear failures—are typically
obtained. Several approaches are used in typical frame
analyses to mitigate this limitation. Concrete design codes
such as ACI 318-08 (ACI Committee 318 2008), for
example, require that the shear strength be checked at the face
of such regions, acknowledging the increased shear strengths of
D-regions. A similar approach is adopted in the proposed

procedure, wherein the acting shear forces in D-region frame
members are artificially reduced when calculating the shear
strains. Consequently, shear failures of such D-regions are
shifted to the adjacent B-regions. An illustrative example is
presented in Fig. 11.

Influence of frame joints
The authors agree with the discusser that the local

behavior of frame joints can significantly influence the
frame behavior. This can manifest itself as a contribution to
the frame deformations or as a possible failure or damage
mode involving the joint core. In the application of the
proposed procedure, frame joints are modeled using semi-rigid
members; therefore, some joint deformation is permitted. In
the verification studies presented in Guner and Vecchio
(2010), this approach resulted in reasonably accurate estimates
of the overall experimental deformations for frames with
properly designed joints. The proposed method neglects failure
and damage modes involving the joint core. Future work will
undertake the incorporation of a nonlinear joint element. For the
present, however, in the cases of unusual or improper reinforce-
ment detailing inside the joint cores, sophisticated two- or three-
dimensional nonlinear finite element methods should be
employed for the investigation of local joint behavior, including
excessive deformations and damage modes.

NONLINEAR SECTIONAL ANALYSES
Analyses conducted using rigorous shear-stress-based

methods have shown that the shear strain through the depth
of the section often varies in a nearly parabolic fashion,
although this is highly dependent on the loading conditions
and section details, as indicated by Vecchio and Collins
(1988). This has led to the assumption of a parabolic shear
strain distribution in the proposed procedure. Verification
studies performed by the authors and by others, such as
Vecchio and Collins (1988) and Petrangeli et al. (1999),
have demonstrated that the parabolic shear strain assumption
provides a good correlation to the sectional behaviors
observed in experiments, with accuracies well within the
acceptable limits for most engineering situations. In
addition, it enables a fast and robust analysis and the
capability to continue an analysis into the post-peak region
to determine frame ductility, perhaps the most sought after
performance measure next to strength in a frame analysis.

Fig. 11—Frame model with shear-force-reduced D-region
members.
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Average crack spacings
An estimate of the average crack spacing is required by the

disturbed stress field model (DSFM) (Vecchio 2000) for the
crack width and the crack slip calculations. Since the
proposed sectional model incorporates a number of concrete
layers, each individually analyzed, it is deemed appropriate
to use a variable crack spacing formulation so that each layer
can have a distinct spacing depending on its position with
reference to the steel layers. Adopted from Collins and
Mitchell (1991), the average crack spacings in the longitudinal
and transverse directions are calculated as follows

(42)

(43)

where ρx and ρy are the smeared reinforcement ratios in the x- and
y-directions; k1 is 0.4 for deformed bars and 0.8 for plain bars or
bonded strands; other variables are defined in Fig. 12.

These spacings are automatically calculated by the
computer-based procedure prior to an analysis and used as
constant values throughout. Consequently, they do not represent
any computational complication to the analyst. The authors agree
that the distance between cracks tends to randomly vary over
a wide range; therefore, high accuracies should not be
expected in this estimation. However, verification studies in
Guner (2008) demonstrated that the formulation implemented
provides sufficient accuracy for use in the DSFM. More
accurate formulations can be implemented as they
become available.

Shear-strain-based layer analysis
In the sectional analyses of concrete layers, the transverse

strain εy must satisfy the transverse force equilibrium of
Eq. (29). The procedure uses three strain components in the
sectional analyses for each concrete layer: longitudinal,
transverse, and shear strains as denoted by εx, εy, and γxy,
respectively. εx and γxy are obtained from the global frame
analysis; therefore, the sectional analyses iterate on εy, based
on the assumption that the stress in the transverse direction is
zero (that is, σy = 0). A graphical representation of equilibrium
equations can be found in Vecchio (2000). Crack slip strains
are individually calculated for each concrete layer in the
application of the DSFM. There is no direct influence of the
crack slip on the assumed plane strain distribution. This
approach is deemed consistent with the overall approximation of
the frame element formulation employed.

smx 2 cx
sx

10
------+ 

  0.25 k1

dbx

ρx

-------××+×=

smy 2 cy
s

10
------+ 

  0.25 k1

dby

ρy

-------××+×=

Reinforcement response
The discusser refers to two separate calculation processes

involving the longitudinal steel layers in the same context. In the
calculation of the sectional force resultants, the reinforcement
strains are determined for the actual concentrated locations
of the steel layers—that is, at the centers of the reinforcing
bars—as was shown with εs1 and εs2 in Fig. 8. Consequently,
the calculated sectional moment value, as defined in Eq. (40), is
based on the discrete steel layer stresses fsxj. In the calculation of
the concrete layer stresses, the reinforcement layers are
smeared within a distance of 7.5 times the bar diameter on
both sides of the bars to obtain the longitudinal reinforcement
ratios for each concrete layer. These ratios are used in the
application of the DSFM to calculate the concrete tension
stiffening effects and to check local crack conditions.
Vecchio (2000) provides a complete treatment of the use of
smeared longitudinal reinforcement with the DSFM.

SUMMARY AND CONCLUSIONS
The purpose of the paper was to present a nonlinear analysis

method for the global analysis of plane frames under
monotonic and pushover loading. The authors believe that
the most important contribution of this method to the literature is
the intrinsic consideration of shear effects, with an accuracy
that is acceptable in most engineering situations while being
sufficiently practical for use in a design office. The input
parameters for the method, such as the material properties,
geometry, and support conditions, can be directly obtained
from the engineering drawings. Furthermore, the method
does not require expert-level knowledge on the reinforced
concrete behavior or the nonlinear finite element methods
(FEMs). The authors are not aware of any other frame analysis
tool that can be used without developing complex hinge
models or making critical decisions in selecting, from a
confusing list of options, appropriate parameter values and
analysis options prior to an analysis while accurately considering
the coupled interaction of axial, flexural, and shear effects.
In addition to the previous discussion, the authors would like
to emphasize the following:

1. The proposed method is not suitable for the consideration
of damage or failure modes and excessive deformations
involving beam-column joint cores. Such behaviors are
typically associated with improperly detailed joint cores.
Consequently, in the presence of unusual or improper
reinforcement detailing inside the joint cores, more
sophisticated nonlinear FEMs should be employed for a
local joint analysis.

2. Future work is required to consider the joint core
behavior. This can be achieved through the incorporation
of a two-dimensional nonlinear joint element to model the
joint damage, deformation, and reinforcing bar slip. A
graphical pre- and post-processor should also be developed for
use with the proposed procedure. In this way, the full practical
potential of the procedure can be realized.
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Fig. 12—Parameters influencing crack spacing (adapted from
Collins and Mitchell [1991]).
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