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The methods available in the literature for the analysis of reinforced
concrete (RC) structures subjected to impact loads generally exhibit
some deficiencies in aspects relating to applicability, practicality,
and accuracy. The shear-dominant behavior of RC members under
impact loads creates another significant shortcoming, because
modeling the shear behavior of RC has long been a challenging
issue. This study aims to present and verify a nonlinear finite
element analysis procedure employing the Disturbed Stress Field
Model, based on a smeared rotating crack approach, as an
advanced method of modeling shear behavior under impact
conditions. The proposed methodology has a wide range of
applicability, and displays fast solution time while providing extensive
and accurate information on structural behavior. The methodology
was tested by analyzing a set of RC beams subjected to impact
loads. A high level of accuracy was demonstrated in various
comparisons between test and analysis results, including peak and
residual displacements, crack profiles, and reinforcement strains.

Keywords: impact behavior; impact loading; nonlinear finite element
analysis; shear.

INTRODUCTION
The demand for impact resistant design of reinforced concrete

(RC) structures crosses a wide spectrum, from nuclear power
reactors to protective barriers and industrial facilities to rock
sheds. Moreover, as a result of recently elevated terror threat
levels in the world, the impact resistant design of buildings has
become a new focus of attention. As a result, the analysis and
design of RC structures for impact loads has been an objective of
many researchers and designers.

Although a wide range of methods are used in current prac-
tice, it is difficult to name a single commonly accepted method
for the design of RC structures against impact loads. Some
existing methods offer relatively practical formulations and
recommendations; however, they tend to put severe limita-
tions on the type and geometry of the structure modeled in
order to simplify the formulation of the impact problem. One
such well-known method, for example, reduces the analyzed
structure to a single-degree-of freedom (SDOF) system,
modeling the structure as a mass attached to a spring,
representing its stiffness.1 Although this approach has been
followed and refined by several researchers,2,3 its limited
applicability only allows the impact analysis of simple structures,
such as isolated beams and slabs that can be reduced to an
SDOF system. Even for such structures, only the displacement-
time response of a representative point on the analyzed structure
can be obtained, with no information on the stress distribution
along the member. To the contrary, because of the high
dynamic conditions present in cases of an impact loading, the
geometry and inertia of the structure play important roles.
Ignoring such effects for the sake of simplifying the
problem typically leads to inaccurate or misleading information
about the impact behavior of the structure analyzed. Unsafe
or inefficient designs are the eventual outcome.

To overcome the limitations of simplistic methods,
designers usually resort to more advanced numerical
modeling methods, such as the finite element method, to
address the complexities of the design problem at hand and
thus obtain more accurate solutions. The majority of the
finite element packages commonly used in practice for the
impact analysis of RC structures, however, require undertaking
sophisticated solutions of a contact problem between two
colliding objects modeled with high detail.4,5 Although such
an approach removes the limitations on the geometry of the
structure and allows the analysis of a wide range of impact
load cases, it also creates major disadvantages for practical
design purposes when the complexity of the modeling and the
length of computation time are considered. Moreover,
modeling the behavior of RC has always proven to be
challenging in many aspects. In particular, the shear
behavior of concrete is a complex issue, and the lack of
rational methods for representing such behavior has long
been a major deficiency in the analytical modeling of RC. On
the other hand, shear mechanisms are known to dominate the
overall behavior of concrete structures subjected to impact
loads.6,7 Hence, an accurate modeling of the shear behavior is
crucial in predicting the impact response of such structures.

This paper introduces and verifies a nonlinear finite
element analysis (NLFEA) procedure, which eliminates the
limitations of simplistic methods while avoiding sophisticated
and time consuming techniques found in more esoteric finite
element approaches. The proposed procedure employs state-
of-the-art techniques for modeling the shear behavior of
reinforced concrete, and provides for a widely applicable
tool with good accuracy and fast solution time.

To demonstrate the application of the procedure, an RC
static NLFEA program called VecTor28 was modified to
incorporate dynamic analysis capabilities for impact loads.
VecTor2 uses a smeared rotating crack approach based on
the disturbed stress field model9 (DSFM) for its computational
methodology; the DSFM is an extension of the modified
compression field theory10 (MCFT) reconfigured to
consider crack slip and noncoinciding stress and strain
principal axes. The MCFT and DSFM have been developed
as rational methods to model the shear behavior of RC structures
and, over the years, have been successfully applied in accurately
simulating the behavior of numerous RC structures under
static loads. The current study applies DSFM to the case of
impact loads, for which the shear behavior was shown to
play a major role.
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In this paper, the proposed NLFEA procedure is described
and the application of the technique into VecTor2 is briefly
introduced. To demonstrate the effectiveness of the procedure,
the NLFEA-computed responses obtained using VecTor2
are compared to the measured responses obtained from a
comprehensive experimental program involving impact tests
on RC beams. The comparisons include time-histories of the
midspan displacements of the beams, crack profiles, and
longitudinal reinforcement strains. The general applicability
of VecTor2 and its computational methodology to the case
of impact loads, and NLFEA-based procedures in general,
are also discussed.

RESEARCH SIGNIFICANCE
Shear mechanisms usually dominate the behavior of RC

members subjected to impacts. The methods currently available
for the impact analysis of RC structures, however, typically fail
to provide an accurate modeling of shear-related mechanisms
due to their complex nature. This study shows that nonlinear
finite element analysis procedures, using appropriate
constitutive models for concrete such as those contained
in the DSFM,9 are a viable method for advanced modeling of
shear-dominated responses of RC structures under
impact load conditions.

NUMERICAL EVALUATION
OF DYNAMIC RESPONSE

Dynamic analysis of a structure requires establishing the
equation of motion, which can be expressed as follows for a
multi-degree-of-freedom structure to be solved using finite
element methods

(1)

where m is the mass matrix, c is the damping matrix, k is the
stiffness matrix, p is the time dependent force vector, u is the
displacement vector,  is the velocity vector, and ü is the
acceleration vector. Because Eq. (1) is derived from basic
principles of mechanics, most dynamic finite element analysis
methods involve its solution for u in one way or another. This
requires establishing the structural property matrices m, c, and k. 

The mass matrix m is a discrete representation of the mass
of the system mobilized during the dynamic motion. In this
study, for its computational ease and minimal storage
requirements, a lumped mass matrix is preferred; all off-
diagonal terms are zero, and the nonzero diagonal elements
are simply calculated by the concentration (lumping) of the
total mass of a particular portion of the structure to a single
point. The concentrated mass is assigned to the associated
degree of freedom, entered as the corresponding diagonal
term in the mass matrix.

mu·· cu· ku p t( )=+ +

u·

Determining the damping matrix c from the physical state
of the structure, such as the dimensions, member sizes, or
materials used, is impractical, and the number of studies in
this area in the literature is quite limited. Therefore, damping
is usually included in the analyses not as a calculated, well-
determined physical property such as the material stiffness,
but, rather, from a mathematical perspective for its ability to
stabilize numerical solutions and take into account energy
dissipating mechanisms. A well-known method commonly
used to form a damping matrix that is both compatible with
the expected damping ratios of the vibrational modes and
also has practical mathematical properties is Rayleigh
damping.11 The Rayleigh damping matrix is expressed as

c = aom + a1k (2)

where a0 and a1 are proportionality constants, calculated
as follows

(3)

where ξ is the damping ratio and ω is the natural circular
frequency of the two selected modes i and j. The majority of
the energy dissipating mechanisms in an RC structure, such
as material hysteresis, concrete cracking and bond slippage,
can be included in an NLFEA analysis through the appro-
priate choice of constitutive and behavioral models; for
numerical considerations, however, viscous damping may
also be needed in the system. Despite the fact that the
proposed NLFEA procedure does not utilize modal analysis,
Rayleigh damping was chosen to introduce viscous damping
in this study to ensure the stability of solutions. For the
calculation of the coefficients a0 and a1, the vibrational
modes of the undamaged structure are determined using an
open-code eigen-value solver,12 and damping ratios are
assigned to the first and second modes to calculate c. A
method to determine the appropriate damping ratios is
discussed in the following sections.

Determination of the stiffness matrix k depends on the
NLFEA analysis method employed. In the present study,
because of its success in modeling shear behavior, the DSFM
was the selected method for representing RC behavior,
the details of which can be found elsewhere.9 It should
be noted that a majority of the behavioral models, such as
concrete and steel hysteretic response, are incorporated
into the procedures used for calculating the stiffness matrix.

Evaluating the structural response under impact loading,
or any dynamic loading for that matter, usually requires the
numerical integration of Eq. (1) because a closed form solution
is impractical for most dynamic loads. Newmark’s Method of
Direct Integration13 was chosen in this study for performing
such calculations. The original formulations of Newmark’s
Method using tangential stiffness properties, however, had to be
revised as follows, because the DSFM employs a total load
approach in generating a secant stiffness matrix.

The equation of motion, as in Eq. (1), can be expressed in
terms of total loads for time steps i and i + 1 as follows

(4a)

a1
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(4b)

where k is the secant stiffness, and p0 is the constant force,
such as self-weight. Equation (4) can be rearranged to give

(5)

where Δu is the change in displacement from the time step i
to i + 1. Newmark formulations relate the incremental change
in accelerations, velocities, and displacements as follow

 (6)

where Δt is the time step length, and β and γ are the integration
constants. Equation (6) can be substituted into Eq. (5) to obtain

(7)

which can be rearranged as

(8)

The incremental acceleration change in Eq. (6) can be
calculated as

(9)

and Eq. (2) and (9) can be substituted in Eq. (8) and rearranged to
obtain the general system of equations

(10)

where k0 is the initial stiffness matrix, which is left
unchanged during the entire analysis. Note that in this equation,
the only unknowns at time step i are ki+1 and ui+1. In most
NLFEA procedures, ki+1 is dependent on ui+1; therefore,
they can be solved through an iterative procedure as
summarized in Fig. 1.

EXPERIMENTAL PROGRAM
To verify the proposed NLFEA procedure, an experimental

program conducted at the University of Toronto7 was
considered for finite element modeling. The experimental
program involved eight simply supported RC beams (four
pairs) tested under free-falling drop-weights impacting the
specimens at the midspan. All specimens had identical
longitudinal reinforcement, but with varying shear reinforcement
ratios intended to investigate the effects of shear capacity on the
impact behavior. Details of the test specimens are presented
in Fig. 2. The specimens were impacted with two different
drop-weights, a heavy weight of 600 kg (1323 lb) and a
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lighter weight of 211 kg (465 lb), to induce different levels
of damage with each impact. The weights were dropped from
a clear height of 3.26 m (128.3 in.) above the specimen,
resulting in an 8.0 m/s (26.25 ft/s) calculated impact
velocity. All specimens, with the exception of SS0b, were
subjected to multiple impacts. With the a-series specimens, the
beams were tested once with the lighter drop-weight and
followed by two tests with the heavy one. For b-series specimens,
the order was reversed; they were tested twice with the heavy
drop-weight, and then one last time with the lighter drop-weight.
A total of 20 impact tests were conducted. Static tests on
replicas of the impact specimens were also conducted to
determine their static load responses. In these tests, SS3 and
SS2 demonstrated a flexural-critical behavior with a ductile
response, while SS1 and SS0 were shear-critical with a brittle
failure mode under the monotonically increasing static loads.
A detailed description of the test program and the results can
be found elsewhere.14

Fig. 1—Flowchart for proposed NLFEA procedure.

Fig. 2—Specimen properties.
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FINITE ELEMENT MODELING
For this study, the proposed NLFEA procedure was

implemented into a two-dimensional, nonlinear finite element
analysis program for RC, VecTor2.8 This software, previously
developed at the University of Toronto, is based on the DSFM
and follows a rotating smeared-crack approach for modeling
RC. The program employs simple techniques for finite element
modeling, using low order four-node rectangular, four-node
quadratic, or three-node triangular elements for modeling
RC, while concentrating on the use of a wide array of
advanced constitutive and behavioral models for concrete
and steel reinforcement.

Taking advantage of the symmetric load and support
conditions, only half of a test beam was modeled. A total of
992 rectangular elements were used to represent the concrete
and 124 truss bar elements were used to model the longitudinal
steel (Fig. 3). Mesh size was determined according to the past
experience, by dividing the depth of the beam to 10 to 15 elements
and keeping the aspect ratio smaller than 2.0. Some analyses were
repeated with the number of elements approximately doubled to
verify that the chosen mesh was not too coarse affecting the
accuracy of the analyses. The transverse reinforcement was
smeared within the concrete, because the stirrups were
evenly distributed along the specimen. The steel plates provided
at the supports and under the impact point were also included in
the model. The specimens were restrained against upward
movements at the supports; to simulate this condition, supports
were introduced in the model with compression-only truss bars, so
that the uplift forces were supported by the top truss bar, avoiding
any artificial tensile stresses in the specimen that would occur if the
bottom support was restrained against translations in the
y-direction. These truss bars were assigned with the calculated
stiffness properties of the supports.

The drop-weight was modeled with rectangular RC
elements (Fig. 3). These elements were assigned a high
rigidity, simulating the relatively nondeformable drop-
weight; they were connected to the structure with rigid
compression-only truss bars, so that when the drop-weight
bounced back, it would not pull up on the specimen. In other
words, the drop-weight was disconnected from the structure
after it bounced back during the analysis. The mass of the
drop-weight was distributed equally to the nodes of the four
elements representing the drop-weight, and the dynamic time
step analysis was initiated with the contact velocity (8.0 m/s)
assigned to those nodes.

Except for the concrete compression base curve and the
concrete hysteresis rules, VecTor2’s default material and
behavioral models8 were used in all analyses. The Popovics
formulation15 for normal-strength concrete was selected as
the compression base curve, because it was found to best fit
the stress-strain curves obtained from the corresponding
concrete test cylinders. Hysteresis response, which is critical

in predicting the vibration properties and energy dissipation
mechanisms, was simulated using the model proposed by
Vecchio and Palermo.16 Using the reported mass data of the
specimens, nodal masses were calculated and lumped to the
nodes of the concrete elements. It has to be noted that the
material models, including the concrete compressive and
tensile behavior models, have not been modified to account
for high strain rate effects. Although this is contrary to the
findings obtained from numerous tests that concrete’s
observed strength increases with increasing strain rate, there
is considerable recent discussion and disagreement among
researchers concerning the inclusion of these strength gains in
finite element modeling. Li and Meng,17 for example, argued that
the strength gain observed in high strain rate tests was mostly due
to the confining stresses resulting from the lateral inertia of the test
specimens. Hence, there is a risk of overestimating the strength
gain if finite element codes calculate the failure of concrete by
using both strain rate dependent strength increase factors and
confining stresses due the inertia. Later studies18,19 proved this
point numerically, by modeling fictitious concrete specimens
loaded under high strain rates and observing a strength increase
with only considering the confining stresses due to the lateral
inertia. The discussions on this subject are still premature, and
more research is needed. In this study, however, the authors
observed that including strength increase factors as recommended
by CEB1 resulted in an unrealistically stiffer estimated response in
the analyzed specimens. Because VecTor2 was capable
of calculating the strength increase due to the confining stresses
generated by the inertia of the structure, strain rate dependent
strength increase factors were omitted in this study.

Although the structural damping was partly incorporated
through the energy dissipation mechanisms inherent in the
hysteresis models used, a minimal amount of viscous damping
needed to be assigned to the specimens to ensure numerical
stability. These damping ratios were decided by a parametric
study, determining the minimum viscous damping required to
obtain a numerically stable solution. Arbitrary damping ratios
were assigned to the first and second modes to calculate the
Rayleigh damping matrix, and the analyses were repeated with
reduced damping ratios until the solutions lost stability. The
smallest amount of viscous damping that resulted in a stable
solution was selected for the final analyses of the test
specimens. The damping ratios found sufficient for a stable
analysis varied from 0.5 to 1% of critical damping assigned to
the first two vibrational modes in accordance with the Rayleigh
damping, with the exception of very heavily damaged
specimens for which up to 5% damping ratio was needed.

In all analyses, Newmark’s constant acceleration method
(β = 0.25, γ = 0.50) was used for its advantages in solution
stability. The time step size selected for the numerical integration
is critical in obtaining an accurate solution, especially for
nonlinear structures. Hence, careful consideration should be
given choosing the step size. One way to select a time step
that would avoid unstable or inaccurate solutions is to
perform an energy balance check. Any instability in the
system creates spurious generation of energy, violating the
conservation of energy. Hence, an energy balance check, as
described by Belytschko et al.,20 can detect this instability,
even if it is local and not detectable by examining the results.
If an instability is detected, the time step size should be
reduced. An alternative and more practical way is to repeat
the analysis with a time step half the original, and compare
both solutions. If they are identical, the selected time step is
acceptable; otherwise, it should be reduced. For the analysesFig. 3—Finite element model.
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presented in this study, the latter approach was followed to
determine the time step size, yielding an optimal time step of
0.1 milliseconds. It has to be noted that, similar to the case
regarding all other analysis parameters, the determination of
neither the time step size nor the damping ratios require any
comparison or calibration with respect to the measured response. 

COMPARISON OF FINITE ELEMENT SOLUTION 
AND EXPERIMENTAL RESULTS

VecTor2 is a comprehensive finite element program,
which gives extensive information about the structure
analyzed, including concrete and reinforcement stresses,
crack profiles, crack conditions, and reinforcement strains,
in addition to common finite element analysis outputs such
as displacements and support reactions. Here, for brevity,
only midspan displacements, crack profiles, and some
longitudinal reinforcement strains, as calculated by
VecTor2 and observed in the experiments, are compared.

Figure 4 presents the comparisons of the NLFEA calculations
and the test results for the midspan displacements of the first
impacts on undamaged specimens. Peak and residual values
are summarized in Table 1. Note that the VecTor2 analysis
of SS0b-1 is not included because, during the test, the specimen
suffered failure-level damage beyond the analysis capabilities.

As seen in Fig. 4 and Table 1, NLFEA predictions for the
midspan displacements of the test specimens were quite
successful. Peak displacements were captured with considerable
accuracy. Some discrepancies, however, were observed in
the post-peak vibrations. For example, for most tests, the
analyses predicted a somewhat shorter period of vibration
compared to the test measurements. Damping for the specimens
was underestimated in some lightly-damaged specimens
(a-series) resulting in higher calculated displacement
amplitudes, whereas it was overestimated for all heavily

damaged specimens (b-series). On the other hand, peak
displacements and post-peak vibrational periods were
captured with greater accuracy for b-series specimens. In
addition, residual displacements after the vibrations ceased
were also captured accurately for all specimens.

For all analyses, crack profiles calculated by VecTor2
were visualized by a post-processor program called
Augustus.21 Calculated and observed crack profiles for two
tests, a heavily damaged specimen and a lightly damaged
specimen, are compared in Fig. 5 and 6, respectively. It
should be noted that, as a result of DSFM’s rotating crack
approach, the crack direction at a load stage is determined by
the principal axis of stress calculated for that load stage. In
other words, the direction of cracks constantly changes, and
Augustus does not sketch the crack directions of the
preceding load stages in the output. Therefore, a calculated
crack profile does not reflect the cracking history of the
structure, but, rather, relates only to that particular load stage.

Fig. 4—Comparison of midspan displacements for first impacts on undamaged specimens.

Table 1—Comparison of displacements
(first impacts)

Test

Peak displacements Residual displacements

Test,
mm (in.)

VecTor2,
mm (in.)

Test/
VecTor2

Test,
mm (in.)

VecTor2,
mm (in.)

Test/
VecTor2

SS0a-1 9.3 (0.36) 10.0 (0.39) 0.93 1.6 (0.06) 0.3 (0.01) 5.33

SS1a-1 12.1 (0.48) 9.9 (0.39) 1.22 0.9 (0.04) 0.3 (0.01) 3.00

SS2a-1 10.0 (0.39) 9.9 (0.39) 1.01 0.5 (0.02) 0.2 (0.01) 2.50

SS3a-1 10.7 (0.42) 9.4 (0.37) 1.14 0.0 0.0 1.00

SS1b-1 39.5 (1.56) 34.6 (1.36) 1.14 17.7 (0.70) 17.5 (0.69) 1.01

SS2b-1 37.9 (1.49) 36.1 (1.42) 1.05 18.5 (0.73) 16.4 (0.65) 1.13

SS3b-1 35.3 (1.39) 34.9 (1.37) 1.01 17.7 (0.70) 17.8 (0.70) 0.99

Average 1.07 — 2.14

Coefficient of variance 0.09 — 0.71
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For this reason, several load stages need to be examined for a
complete analysis of the estimated crack pattern. Moreover, the
crack condition is calculated for each concrete element,
whereas the cracks in the specimen would develop singly
over a region. Hence, the calculated crack directions for
individual elements should be regarded as an estimate of
the inclination and width of a typical crack over that region.
In Fig. 5 and 6, the crack profiles estimated at the initial
stages of the response (negative moment phase as discussed
by Saatci and Vecchio7), at the time the peak midspan
displacement occurred, and at the final resting stage of the
specimen, are presented and compared with the crack
profiles obtained from the test results. Note that the crack
widths measured after the tests relate to the final resting
stage of the specimen. The crack widths calculated by
VecTor2 for the time when the peak midspan displacement
occurred are also presented to give an indication of the levels
of predicted maximum crack widths.

As seen in the figures, the crack profiles were predicted
well. Vertical cracks starting from the top face were
predicted correctly at the early stages of the response.
Vertical cracks in the beam overhangs, and their slight
inclination towards the supports, were also predicted accurately.
The NLFEA calculations support the idea that these cracks
occur at the very early stages of the response, as argued by
Saatci and Vecchio.7 In the later stages of the response, the
formations of diagonal shear cracks were accurately
predicted in both flexural-critical and shear-critical specimens.

Shear plug formations were also correctly represented in all
heavily-damaged specimens.

Twelve strain gauges were connected to the longitudinal
steel bars at different locations in the test specimens. Strains
measured with these gauges were compared to the average
reinforcement strain calculations obtained from NLFEA
analyses. It has to be noted that strain gauge measurements
on an embedded bar are highly sensitive to the proximity of
the gauge to a crack. The smeared crack approach followed
by the presented methodology allows calculating both an
average strain and a local strain at a crack. Because the
gauges close to the cracks mostly failed during testing, the
measurements obtained from undamaged gauges were
compared with calculated average strains. Herein, for
brevity, only bottom longitudinal bar midspan strains were
compared. As seen in Fig. 7, VecTor2 predicted the longitu-
dinal reinforcement strains with reasonable accuracy. Peak
strains were generally predicted with good accuracy, except for
the highly damaged specimen in SS1b-1. Post-peak responses
were also predicted well. The discrepancies in the comparisons
can partly be attributed to the difficulties and errors involved in
measuring the strains in a reinforcing bar, especially for the
highly deformed specimens. Note that, in SS1b-1, the strains at
the midspan were exceptionally high, possibly causing a loss in
strain gauges’ accuracy and resulting in the high discrepancy
observed between the measured and computed responses.

Similar analyses were carried out for the second impact
tests on the same specimens. VecTor2 has the capability to
start from the damaged condition of a previous analysis and
apply a new load on the structure. In such an analysis, initial
conditions, such as displacements, concrete and reinforcement
strains and stresses, and crack conditions are acquired from
the final values of the previous analysis. The initial stiffness
matrix k0 for damping calculations is replaced with the stiffness
matrix of the last time step of the previous analysis, and all
proceeding stiffness calculations are carried out with
consideration of the loading history of the structure. By
using this feature, the second impacts on the same specimens
were analyzed, starting from the results of the analyses
carried out on the undamaged specimens. It should be noted
that this approach causes accumulating errors, because the
first analyses were not error-free, and, hence, these subsequent
analyses start from a state that contains errors. On the other

Table 2—Comparison of displacements
(second impacts)

Test

Peak displacements Residual displacements

Test,
mm (in.)

VecTor2,
mm (in.)

Test/
VecTor2

Test,
mm (in.)

VecTor2,
mm (in.)

Test/
VecTor2

SS1a-2 39.6 (1.56) 45.3 (1.78) 0.87 17.5 (0.69) 17.0 (0.67) 1.03

SS2a-2 38.5 (1.52) 37.8 (1.49) 1.02 18.6 (0.73) 17.0 (0.67) 1.09

SS3a-2 36.3 (1.43) 34.4 (1.35) 1.06 17.0 (0.67) 15.4 (0.61) 1.10

SS2b-2 62.1 (2.44) 59.7 (2.35) 1.04 37.5 (1.48) 36.4 (1.43) 1.03

SS3b-2 54.8 (2.16) 53.8 (2.12) 1.02 33.3 (1.31) 30.8 (1.21) 1.08

Average 1.00 — 1.07

Coefficient of variance 0.07 — 0.03

Fig. 5—Observed and calculated crack profiles, SS1b-1.
(Note: Crack widths in mm [in.].)

Fig. 6—Observed and calculated crack profiles, SS3a-1.
(Note: Crack widths in mm [in.].)
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hand, the errors carried forward were likely not significant,
evidenced by the good accuracy in residual displacements
obtained from the first analyses, allowing for stable solutions
with reasonable accuracies. Attempts to analyze the same
specimens for the third impact tests, however, generally
failed because the accumulated errors from the first and
second impact analyses, coupled with the numerical problems
related to the significantly reduced stiffnesses of the highly

damaged specimens after the first two impact tests, made it
impossible to obtain a numerically stable solution. Second
impact Tests SS0a-2 and SS1b-2 were also omitted, because
in these tests, the specimens suffered extensive damage
beyond the analysis capabilities of VecTor2.

Figure 8 compares the midspan displacements as measured
during the tests and found from VecTor2 analyses. As
summarized in Table 2, the agreement between the test

Fig. 7—Observed and calculated longitudinal reinforcement strains at
midspan: first impacts.

Fig. 8—Comparison of midspan displacements for second impacts on
damaged specimens.
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results and the VecTor2 calculations were very satisfactory,
with discrepancies less than 10% for most tests, both for
peak and residual displacements. In general, however, the
calculated response dampened out faster than the measured
response. In other words, as seen in some analyses carried
out for the first impacts, VecTor2 overestimated the
damping in the specimens.

 The crack profiles calculated by VecTor2 are compared in
Fig. 9 and 10 with the profiles obtained from the second
tests. Only the results for two tests, SS3a-2 representing a
lightly damaged specimen, and SS2b-2 representing a
heavily damaged specimen, are presented here for brevity.
As seen in the figures, the NLFEA analyses predicted
general crack patterns reasonably well. Extensive cracking at
the level of bottom reinforcement was predicted accurately;
note that most specimens either developed horizontal cracks
at this level, or they suffered spalling of the bottom cover
concrete. Wide diagonal cracks forming the shear-plug were
also predicted successfully, including the statically flexural-
critical specimens. In the tests, it was observed that the

diagonal cracks forming the shear-plug were wider close to
the bottom; this also was observed in the calculations. Some
discrepancies, however, exist in the crack width predictions.
For example, VecTor2 over-estimated the residual widths of
the vertical cracks at the midspan.

The comparison of the test and analysis results for the midspan
longitudinal reinforcing bar strains are presented in Fig. 11
for the second impacts. As seen in the figure, VecTor2
predicted longitudinal reinforcement strains at the midspan
with reasonable accuracy. Although VecTor2 generally
overestimated the strain response, the general shapes of
calculated and measured strain responses were sufficiently
similar. In general, it seems that the factors that caused the
discrepancies between the calculated and measured response
in the first impact test analyses persisted for the second
impact analyses as well. Nevertheless, considering the high
levels of damage the specimens suffered, it is significant that a
NLFEA analysis estimated the displacements, crack profiles,
and reinforcing bar strains with very good levels of accuracy.

Fig. 11—Observed and calculated longitudinal reinforcement strains at midpan,
second impacts.

Fig. 9—Observed and calculated crack profiles, SS3a-2.
(Note: Crack widths in mm [in.].)

Fig. 10—Observed and calculated crack profiles, SS2b-2.
(Note: Crack widths in mm [in.].)
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CONCLUSIONS
Comparisons of beam impact test results with VecTor2

analysis results using the proposed NLFEA procedure led to
the following conclusions:

1. The proposed NLFEA procedure performed well in
predicting displacements, damage levels, and reinforcement
strains. The methodology based on the DSFM proved to be
successful in predicting the shear-dominant behavior of the
specimens under impact loads. The shear-critical failure
under dynamic loading of statically flexural-critical
specimens was captured well;

2. Post-peak vibration characteristics, compared between the
test results and the NLFEA analyses’ results, showed some minor
discrepancies. These discrepancies were mostly attributed to the
deficiencies regarding the modeling of hysteresis behavior of
concrete and steel under high strain rate conditions;

3. The proposed NLFEA procedure was also successful in
predicting the response of the damaged specimens for the
second impact tests on the same specimens. Agreement
between the test and analysis results for the peak and residual
displacements was strong. This indicates that the proposed
procedure and the DSFM are capable of accurately modeling
the reduced stiffness of a reinforced concrete structure after
it suffers considerable levels of damage;

4. The simplified approach followed for modeling the
drop-weight and impact load proved to be successful. This
approach completely eliminated the need for an impact force
history. Predetermination of the impact force history in an
impact event generally requires employing sophisticated
methods; however, the only required parameters for the
impact analysis with the proposed procedure were the drop-
weight mass and its impact velocity, which are usually
known parameters for design problems;

5. The proposed procedure, in conjunction with the chosen
behavioral models, incorporated the majority of the energy
dissipating mechanisms in to the structural model. Only a
slight amount of viscous damping, added through the
Rayleigh method, was needed to numerically stabilize the
solutions. The majority of the damping was supplied by
other behavioral mechanisms such as material hysteresis and
concrete cracking. The fact that externally assigned viscous
damping had little role in the calculated response is important,
because it is difficult to estimate the damping characteristics of a
structure. Modeling of energy dissipating mechanisms by
VecTor2 significantly reduced the role of an uncertain
parameter in the computer model. On the other hand, hyster-
esis models for concrete and steel should be improved for
high strain rate loadings to better simulate the entire
damping characteristics of the structure;

6. The proposed procedure was computationally efficient.
The time required to complete an analysis was typically
significantly shorter than with some other well-known
sophisticated finite element programs. Using short time steps
for improved accuracy did not have a severe adverse effect
on computational times because iterations converged faster
with shorter time steps;

7. Omitting the strain rate dependent strength increase
factors for concrete resulted in more accurate predictions for
the analyzed test specimens. This issue, however, needs to be
further investigated with different tests, strain rates, and
strain rate dependent material formulations, to determine if it
was a situation particular to the test specimens analyzed, or
the CEB formulations used for considering the strain rate
effects were overestimating the strength gain; and

8. The proposed methodology is currently not capable of
modeling the local damage, such as penetration, perforation, or
scabbing under high-velocity impacts. Attempts to simulate the
tests on heavily damaged specimens, such as SS0b-1, SS0a-2, and
SS1b-2 that developed cracks wider than 20 mm (0.8 in.) and
suffered extensive scabbing, have also failed due to the numerical
instabilities and the limitations of the behavioral models
employed. Further improvements are needed in both the
methodology and the behavioral models to extend the analysis
capabilities to include the failure-level damages.
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