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 An effective approach is presented for estimation of the ultimate
deformation and load capacity of reinforced concrete columns
based on principles of axial-shear-flexure interaction. Conventional
section analysis techniques are employed for modeling the flexure
mechanism, and the simplified modified compression field theory is
implemented for modeling the shear behavior of elements. Average
centroidal strains and average concrete compression strains derived
from the flexural model are implemented in the shear model and
used to calculate shear deformation and concrete strength
degradation. This approximate procedure can be easily implemented
in a hand-calculation method in a few steps. The approach is
employed for the estimation of the ultimate deformation of shear- and
flexure-dominated reinforced concrete columns previously tested.
The analytical results are compared with the experimental data
and consistent, strong agreement is achieved.

Keywords: axial deformation; axial-shear-flexure interaction; displacement-
based evaluation; ductility; ultimate deformation; ultimate strength.

INTRODUCTION
Although the behavior of reinforced concrete columns and

beams has been studied for more than 100 years, the problem
of estimating ultimate deformation at ultimate strength, or
the lateral deformation at shear failure, remains unsolved.
Experimental studies by various authors1,2 revealed that
reinforced concrete columns subjected to axial load and
lateral load with similar ultimate strength may fail in signif-
icantly different ultimate deformations. Although it is agreed
that increasing the ratio of the transverse reinforcement will
enhance the ductility of a column, determining the ultimate
deformation at which the element fails in shear is still a
major challenge for engineers. Based on newly introduced
performance-based design philosophies for response estimation
of structures, one of the main performance properties in the
design process is the ductility and deformability of the structure.
The more ductility the structure possesses, the better the
performance and the more economical the design. Therefore,
it is essential to have and apply a suitable analytical tool to
accurately estimate the ultimate deformation or ductility of
reinforced concrete column elements.

Recently, an attempt was made to include the effects of
shear deformations in sectional analyses through the axial-
shear-flexure interaction (ASFI) method.3,4 The ASFI
method was developed to improve not only the response
simulation of reinforced concrete elements with dominant
shear behavior, but also to improve the flexural response
calculation capabilities of the fiber model approach. This
was done by satisfying compatibility and equilibrium
conditions for both the flexure and shear mechanisms
employed in the ASFI method. In the approach, the flexure
mechanism was modeled by applying traditional section
analysis techniques, and shear behavior was modeled based
on the modified compression field theory (MCFT).5 The
approach was implemented and verified for a number of
reinforced concrete columns tested with different axial loads,

transverse reinforcement ratios, longitudinal reinforcement
ratios, and scales ranging from one-third to full-scale
specimens. The application of the MCFT as a shear model
within the ASFI method, however, requires relatively intensive
computation—a calculation process involving inversion of a
3 x 3 matrix, and an iteration process converging five
different variables, which might not be suited to engineers in
practice. In addition, the results of analyses by the ASFI
approach suggested further studies on the onset of shear failure
or ultimate deformation of reinforced concrete columns.

Considering the fact that columns with either dominant
flexure or shear response fail finally in shear, the main objective
of this study was to provide a simple analytical model,
applicable for design in practice, for determining the critical
conditions that result in the shear failure of reinforced
concrete columns and the corresponding ultimate strength
and deformation capacity. In this new analytical process,
tension-shear failure across cracks, loss of concrete compression
strength, and compression-shear failure were the main
failure mechanisms considered at the ultimate state for both
shear- and flexure-dominant members. In addition, crushing
of cover concrete, bond failure, buckling of compression
bars, and rupture of reinforcement were other potential
failure conditions and were checked at the ultimate state.

RESEARCH SIGNIFICANCE
Accurate estimation of the ultimate deformation and

ductility of reinforced concrete elements has long been a
significant challenge and the aim of researchers. A new
approach was developed to estimate both the ultimate
deformation and load capacity of reinforced concrete
columns and beams. The proposed method can be used as an
effective analytical tool for the purpose of displacement-
and performance-based design.

ASFI METHOD AND UNIAXIAL
SHEAR-FLEXURE MODEL

The ASFI method is composed of two models: a flexure
model based on traditional uniaxial section analysis principles,
and a shear model based on a biaxial shear element approach.
The total lateral drift of a column between two sections, γ, is
the sum of shear strain γs and the flexural drift ratio γf between
the two sections. Furthermore, the total axial strain of the
column between the two sections, εx, is the sum of axial strains
due to axial εxa, shear εxs, and flexural εxf, (Fig. 1), mechanisms

γ = γs + γf (1)
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εx = εxa + εxs + εxf (2)

The centroidal axial strain εxc is derived from a section
analysis or axial-flexure model, and is defined as the sum of
the strains due to axial and flexural mechanisms, εxc = εxaf +
εxf. On the other hand, from the shear model for axial-shear
elements, the sum of the axial strains due to axial and shear
mechanisms is determined, εs = εxas + εxs. As a result, to
obtain εx in Eq. (2), εxf must be extracted from εxc and added
to εs, considering εxa = εxaf = εxas.

Equilibrium of the shear and axial stresses from the axial-
flexure model, τf and σxf, and from the axial-shear model, τs
and σxs, respectively, must be satisfied simultaneously
through the analysis. That is

σxf = σxs = σo (3)

τf = τs = τ (4)

where σxf is the axial stress in the axial-flexure mechanism,
σxs is the axial stress in the axial-shear mechanism, σo is the
applied axial stress, τf is the shear stress in the axial-flexure
mechanism, τs is the shear stress in the axial-shear mechanism,
and τ is the applied shear stress. Stresses in axes perpendicular
to the axial axis of the column, the clamping stresses σy and
σz are ignored due to equilibrium between confinement
pressure and hoop stresses.

σy = σz = 0 (5)

Figure 2 illustrates the two models for axial-shear and
axial-flexure and their interactions by means of springs in
series. Figure 3 illustrates the ASFI method for a reinforced
concrete column with two end sections, including the
equilibrium and compatibility conditions. The total axial
deformations considered in the ASFI method were axial
strains developed by axial, shear, and flexural actions, and
by pullout mechanism. 

In a uniaxial shear-flexural model applied in this study,
compatibility was also satisfied for average concrete
compression strains. Consider a reinforced concrete column
of moderate height, fixed against rotation and translation at
the bottom and free at the top, subjected to in-plane lateral
load and axial load, as shown in Fig. 4. Given its pattern
along the column (refer to Fig. 4(a)), the concrete principal
compression strain for an element between two sections, ε2,
may be determined based on average values of the concrete
uniaxial compression strains corresponding to the resultant
forces of the concrete stress blocks.

(6)

This is the main hypothesis of the new method proposed
herein; this assumption simplifies the shear model significantly
from a biaxial to a uniaxial mechanism. For the column in

ε2 0.5 ε2i
ε2i 1+

+( )=
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Fig. 1—Average centroidal strain due to flexure.

Fig. 2—Spring model of ASFI method.

Fig. 3—Axial-shear-flexure interactions in ASFI method.

Fig. 4—A reinforced concrete column subjected to shear
and axial loads: (a) concrete principal compression stress
pattern; (b) cross section; and (c) stress blocks and strains
at two adjacent sections.
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Fig. 4, the compression strain obtained from Eq. (6) is set
equal to the average principal compression strain of the
element between the two sections of i and i + 1.

MODIFIED COMPRESSION FIELD THEORY
The shear mechanism in the ASFI method, as well as in

this analytical process, was modeled according to the
MCFT.5 It is a suitable displacement-based evaluation
approach for predicting the load-deformation response of
reinforced concrete membrane elements subjected to shear
and normal stresses. The MCFT is essentially a smeared
rotating crack model. It includes compression softening
effects, tension stiffening effects, and consideration of local
conditions at cracks. The MCFT is based on orientations of
the principal average strains in an element leading to the
calculation of principal average stresses in concrete through
concrete constitutive relationships. Transforming the
average concrete principal stresses to the global coordinate
axes and adding to the average stresses in the reinforcement
gives the total average stresses in the element. There are two
checks in the calculation process relating to the crack zones.
The first is to ensure that tension in the concrete can be
transferred across the crack. The second is to ensure that the
shear stress on the surface of the crack does not exceed the
maximum shear resistance provided by aggregate interlock.
A reinforced concrete element within the context of the
MCFT can be illustrated by the free body diagram of the
membrane element depicted in Fig. 5.

DERIVATION OF ANALYTICAL MODEL
Considering the free body diagram of the membrane

element in Fig. 6, equilibrium conditions in the MCFT
require that

σx = fcx + σsx fsx (7)

σy = fcy + σsy fsy (8)

where, for beams and columns, σx is the total normal stress
in the x-direction (that is, the applied axial stress); σy is the
total normal or clamping stress in the y-direction, taken to be
zero; fcx and fcy are stresses in concrete in the x (axial) and y
(transverse) directions, respectively; ρsx and ρsy are the
reinforcement ratios in the x (axial) and y (transverse)
directions, respectively; and fsx and fsy are the stresses in the
main bars (axial direction) and in the transverse reinforcement
(y-direction), respectively. 

A Mohr’s circle for concrete stress yielded the following
equilibrium relationships

fcx = fc1 – τscotθc (9)

fcy = fc1 – τstanθc (10)

fc2 = fc1 – τs(tanθc +1/tanθc) (11)

where fc1 is the concrete principal tensile stress, fc2 is the
concrete principal compressive stress, τs is the concrete
shear stress, and θc is the crack angle.

On the other hand, the compatibility equation based on the
Mohr’s circle for strain requires that

(12)

(13)

where εx is the axial strain, εy is the strain in the transverse
reinforcement, ε1 is the concrete principal tensile strain, and
ε2 is the concrete principal compression strain.

With εx obtained from section analysis, combining Eq. (9),
(10), (12), and (13) yielded two useful equations for estimation
of εy and ε1.

(14)

where εyy is the yield strain, and 

where Es is the modulus of elasticity of transverse reinforce-
ment. When strain in the transverse reinforcement is greater
than the yield strain εyy, Eq. (15) can be applied 

(15)

where fsyy is the yield stress of transverse reinforcement and
fcx is determined based on Eq. (7). At the ultimate states,
Eq. (15) is usually the governing equation. Given β as the
concrete compression softening factor, an average initial
value of fc1 = 0.44ft′ can be considered for Eq. (14) and (15)
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Fig. 5—A reinforced concrete membrane element subject to
in-plane stresses.

Fig. 6—Reinforced concrete in-plane shear element showing
average stresses.
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by assuming a tension stiffening model and an average
tensile strain ε1 that can be derived from Eq. (16) based on
an upper bound of β ≤ 1 and lower bound of β ≥ 0.2. 

(16)

where εc′ is the concrete peak strain. The MCFT limits the
shear stress transferred by aggregate interlock across a crack
surface, τi, to the value given by Walraven’s equation

(17)

where w = sθε1, and sθ = 1/[(sinθc/sx) + (cosθc/sy)], where sx
and sy are the average crack spacings in the x- and y-directions,
respectively, and ag is the maximum aggregate size.

Equilibrium in the y-direction at the crack requires that 

(18)

where fsycr is the transverse reinforcement stress at the crack,
and σy is the clamping stress, which is equal to zero. Hence,
for fsycr = fsyy, Eq. (18) yields

(19)

β 1
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FLEXURE MECHANISM
The traditional section analysis method is a handy and

convenient approach for the evaluation of the flexural
performance of a reinforced concrete column or beam.
Because the analysis is implemented assuming a uniaxial
stress field, material modeling and analytical computation
are simple and a solution can be achieved with adequate
convergence in a few steps. Figure 7 shows a flexural section
for a column. The force-strain relationship for a section
under uniaxial bending can be derived from axial load
equilibrium as follows

(20)

where P is the applied axial load. Other components are

(21a)

(21b)

where Es = fs/εs, Es′ = fs′/εs′, Ec = fc/εc, and a = β1c, and
where β1 is the rectangular stress block coefficient that is
equal to 0.85 for fc′ < 28 MPa (4061 psi); β1 is reduced
continuously by 0.05 for each 7 MPa (1015.3 psi) above
28 MPa (1061 psi). The main assumption of plane sections
yields the following relationships

(22)

Solving Eq. (20) for εo and β1 = 0.85 gives

(23)

By determining fs′, fs, and fc, the bending moment within
the section is obtained by applying moment equilibrium for
the section

(24)

If M is the end-moment of a column, as in Fig. 3, then flexural
shear stress τf is determined based on Eq. (25) 

(25)

where d ≤ df ≤ h is assumed based on the failure mode
described in the following.

PROCEDURES FOR ESTIMATION 
OF ULTIMATE DEFORMATION

The main failure mechanism for both shear- and flexure-
dominated beams and columns is shear failure. Figure 8
shows Specimens 12 and 15 from Table 1 with shear and
flexure responses, respectively; however, both failed in
shear at the ultimate deformation. Bond failure, buckling of
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Fig. 7—Stresses and strains relations at critical flexural
section, for example, bottom end-section in Fig. 4.

Fig. 8—Shear failure at ultimate deformation for both
shear- and flexure-dominated columns.



ACI Structural Journal/March-April 2009 191

compression bars, rupture of the tensile bars, and crushing of
cover concrete are other failure criteria for reinforced concrete
columns and beams. The analytical procedure presented
herein is based on assuming shear failure as the main failure
mechanism, and checking for the other failure criteria.

Three shear failure conditions are defined based on the
MCFT as shear failure at a crack (Failure Mode 1), failure
due to loss of compression strength (Failure Mode 2), and
shear-compression failure (Failure Mode 3). Shear failure at
a crack, which is typically the governing case for columns
with low transverse reinforcement ratios, is determined
using Eq. (19) and (25). Shear failure occurs when

(26)

where df = d. Columns under high shear force, such as short
columns, if not failing via Mode 1, will lose compression
strength f2 due to shear deformation and fail before the peak,
ε2 ≤ εc′ . This failure condition, Mode 2, is defined by Eq. (11)
and (25) when

(27)

where df = h for short columns with span-depth ratios less than
1.0 and df = d for columns with span-depth ratios more than 1.5;
for ratios between 1.0 and 1.5, df is determined by interpolation. 

Columns and beams with a ductile flexure performance,
when having sufficient transverse reinforcement and relatively
low shear stress, will fail in shear when ε2 = εc′ via Mode 3.

(28)

where ε2 = ε2′ and df = h. Finally, for flexure beams and
columns with very low shear stress, especially under heavy
cyclic loadings, the compression softening factor may be
limited to β ≥ 0.15. In other words, if β reduces to 0.15, then
that will signal the ultimate state. None of the columns in
Table 1 reached this limit within the range ε2 ≤ εc′, hence
further study is required in regard to this condition. 

Based on the shear failure criteria described previously, an
analytical procedure can be constructed for the estimation of
the ultimate deformation of a reinforced concrete column
with a flexure section at the section with maximum moment,
such as the column shown in Fig. 3. In step-by-step fashion,
the procedure is as follows:

1. Assume an initial value for concrete compression strain
of the flexure section, εc; for example, εc = εc′; 

2. Employ Eq. (21) through (23) to determine the centroidal
strain of the section, εo, through one or two iterations.
Assume an initial value for εo; for example, εo = 0.001;

3. Determine the axial strain at the inflection point with
zero moment, εxa, using basic sectional analysis principles;

4. Compute the average concrete principal compression
strain ε2 and axial strain εx for the shear model

τf
M

bdf Lin

--------------- τi fsyyρsy θccot+≥=

τf
M

bdf Lin

---------------
fc1 fc2–( )

θc 1 θctan⁄+tan( )
---------------------------------------------≥=

τf
M

bdfLin

---------------=

Table 1—Material properties of test specimens

Specimen Type b, mm (in.) h, mm (in.) 2Lin, mm (in.) Sh, mm (in.) ρg, % ρw, % fsyx, MPa (ksi) fsyy, MPa (ksi) fc′, MPa (ksi) P, kN (kips)
Failure 
mode

No. 126 DC 300 (11.8) 300 (11.8) 900 (35.4) 150 (5.9) 2.26 0.14 415 (60) 410 (59) 28 (4.1) 540 (121) 1

No. 146 DC 300 (11.8) 300 (11.8) 900 (35.4) 50 (2.0) 2.26 0.4 415 (60) 410 (59) 26 (3.8) 540 (121) 2

No. 156 DC 300 (11.8) 300 (11.8) 900 (35.4) 50 (2.0) 2.26 0.85 415 (60) 410 (59) 26 (3.8) 540 (121) 2

No. 166 DC 300 (11.8) 300 (11.8) 600 (23.6) 50 (2.0) 1.8 0.43 450 (65) 410 (59) 27 (3.9) 540 (121) 2

A17 DC 150 (5.9) 420 (16.5) 1260 (49.6) 200 (7.9) 0.9 0.13 350 (51) 290 (42) 18.3 (2.7) 328 (74) 1

B17 DC 300 (11.8) 300 (11.8) 900 (35.4) 160 (6.3) 1.69 0.08 336 (49) 290 (42) 18.3 (2.7) 477 (107) 1

2CLH188 DC 457 (18) 457 (18) 2946 (116) 457 (18) 2 0.1 330 (48) 400 (58) 33 (4.8) 500 (112) 2

3CLH188 DC 457 (18) 457 (18) 2946 (116) 457 (18) 3 0.1 330 (48) 400 (58) 25.6 (3.7) 500 (112) 1

No. 29 DC 457 (18) 457 (18) 2946 (116) 305 (12) 2.5 0.17 434 (63) 476 (69) 21.1 (3.1) 2650 (596) 3

No. 49 DC 457 (18) 457 (18) 2946 (116) 305 (12) 2.5 0.17 447 (65) 469 (68) 21.8 (3.1) 667 (150) 2

N18M10 DC 300 (11.8) 300 (11.8) 900 (35.4) 100 (3.9) 2.7 0.19 380 (55) 375 (54) 26.5 (3.8) 429 (96) 1

No. 111 DC 200 (7.9) 400 (15.7) 1000 (39) 128 (5) 2.53 1 360 (52) 345 (50) 45 (6.5) 0 2

C5-00S12 SC 203 (8) 203 (8) 1220 (48) 76.2 (3) 1.93 1 573 (83) 515 (75) 37.9 (5.5) 0 3

C10-05S12 SC 203 (8) 203 (8) 1220 (48) 76.2 (3) 1.93 1 586 (85) 407 (59) 69.6 (10) 142 (32) 3

C10-10S12 SC 203 (8) 203 (8) 1220 (48) 76.2 (3) 1.93 1 574 (83) 515 (75) 67.8 (9.8) 285 (64) 3

C10-20N12 SC 203 (8) 203 (8) 1220 (48) 76.2 (3) 1.93 1 572 (83) 514 (75) 65 (9.4) 569 (128) 3

No. 413 DC 400 (15.7) 400 (15.7) 3200 (126) 80 (3.1) 1.57 1.1 474 (69) 333 (48) 25.6 (3.7) 819 (184) 3

No.7 13 SC 550 (21.6) 550 (21.6) 3300 (130) 90 (3.5) 1.25 1 511 (74) 325 (47) 32.1 (4.6) 2913 (655) 3

B214 DC 250 (9.8) 250 (9.8) 1000 (39.4) 40 (1.6) 2.43 0.4 379 (55) 774 (112) 99.5 (14.4) 2176 (449) 3

D1N315 SC 242 (9.5) 242 (9.5) 1250 (49.2) 40 (1.6) 2.43 0.8 461 (67) 486 (71) 37.6 (5.5) 705 (158) 3

D1N615 SC 242 (9.5) 242 (9.5) 1250 (49.2) 40 (1.6) 2.43 0.8 461 (67) 486 (71) 37.6 (5.5) 1410 (317) 3

Note: DC = double curvature or with two fixed ends; SC = single curvature or cantilever; b = width of section; h = depth of section; Lin= length of column from inflection point to
end section; Sh = hoop spacing; ρg = longitudinal reinforcement ratio; ρw = transverse reinforcement ratio; fsyx = longitudinal reinforcement yield stress; fsyy = transverse reinforcement
yield stress; fc′ = concrete compression strength; P = axial load; Failure Mode 1 = shear failure at crack ε2 < ε ′c; Failure Mode 2 = loss of compression strength ε2 < ε ′c; and Failure
Mode 3 = shear-compression failure ε2 = ε ′c.
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(29)

(30)

5. Using Eq. (13) through (15), determine ε1 and εy.
Because the problem is being solved for conditions at the
ultimate state, usually the transverse reinforcement has
yielded and only Eq. (15) need be applied; 

6. Employ Eq. (12) to obtain tanθc;
7. Using Eq. (26) through (28), check for shear failure. If

no failure has occurred, then increase εc and repeat the
previous steps. If, for example, Eq. (26) shows shear failure
at the crack, then εc must be reduced until all three equations
provide greater or equal values;

8. Check for crushing of the cover concrete. This is not a
failure model, but the axial load capacity will decline; strain
hardening sometimes will help mitigate the decline. Check
for buckling of the compression bars, bond failure, rupture of
tensile bars, and compression softening factor β ≥ 0.15;

9. Determine the ultimate deformation using Eq. (1), where 

and 

10. Finally, the ultimate lateral load capacity is obtained by

Vu = τf bh (31)

ε2
εc εxa+

2
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εx
εo εxa+

2
------------------=

γf
δ

Lin

------- 1
Lin

------- xφ xd

0

Lin
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γs
2 εx ε2–( )

θctan
-----------------------=

If the column or beam has sufficient transverse reinforcement,
then the initial value for εc can be selected as εc = 2εc′ – εxa,
which is the limit for Failure Mode 3. Then check for other
failure modes. If this is the dominant failure mode, then
determine the ultimate drift.

Confinement effects can be taken into account for both
shear and flexure models based on equations provided by
Park et al.2 Note that both the confinement factor and the
compression softening factor, β, are applied in the constitutive
law of compression concrete of the shear model. For the flexure
model, however, only the confinement factor is considered
and employed in the concrete stress-strain relationship.

NUMERICAL EXAMPLES
The analytical procedure was employed for Specimen 12,

described in Table 1, with a shear-dominant response.
1. As an initial value, assume εc = –0.002.
2. To satisfy Eq. (23), an iteration procedure can be

applied with few steps. First consider εo = 0.002 and a =
0.85c; hence

or 

From Eq. (22), εs = 0.006 and εs′ = –0.002; thus Eq. (23)
gives εo = 0.00265. After three or four iterations, εo
converges to 0.00296.

3. The axial strain at the inflection point with zero moment
can be determined as

where 2fp/εp is the average concrete modulus of elasticity of
section at the inflection point and εp and fp are confined concrete
peak strain and stress, respectively, which are determined based
the confinement model by Park et al.2 For simplicity, they might
be considered equal to εc′ and fc′, respectively. 

4. The average concrete principal compression strain ε2
and axial strain εx for the shear model are then obtained by 

and

5. Assuming yielding of the transverse bars, Eq. (15) can
be employed to obtain ε1

a
hεc

2.353εc 1.353εo–( )
------------------------------------------------=
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2.353 0.002–( ) 1.353 0.002( )–
------------------------------------------------------------------------- 81 mm (3.19 in.)= =

εxa
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2fp εp Esρsx+⁄( )
---------------------------------------- 0.00019–= =

ε2
εc εxa+

2
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2
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εx ε2–( ) fc1 σx– ρsxEsεx+( )
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-------------------------------------------------------------------- εx+=

Fig. 9—Presumed curvature distribution for reinforced
concrete column.

Fig. 10—Comparison of experimental result for Specimen 12
and ultimate deformation and load obtained from analytical
model.
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Fig. 11—Comparison of experimental and analytical results. (Continued on next page.)
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where σx = σo = P/bh, fc1 = 0.44fv′ = 0.44 × 0.33√fc′ = 0.44 ×
0.33√28 = 0.77 MPa (111.7 psi); hence, ε1 = 0.024.

6. Equation (12) is employed, producing the result of
tanθc = 0.33.

7. Checking for shear failure at a crack using Eq. (26), the
moment is obtained by Eq. (24).

where τi is computed using Eq. (17).
The result indicates that a shear failure at crack has

occurred, hence εc must be reduced.
Selecting εc = –0.001 and repeating the previous steps

results in

Therefore, shear failure at a crack (that is, Failure Mode 1)
is defined as the governing failure mechanism of this specimen
at the ultimate state.

8. From the test, there is no sign of cover concrete crushing
or other failure criteria governing. Usually, Mode 1 failure
gives the lowest ultimate drift ratio. 

9. Based on the curvature distribution shown in Fig. 9, the
shear and flexural deformations are determined 

 and
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Fig. 11 (cont’d)—Comparison of experimental and analytical results.
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γ = γf + γs = 0.0049

10. Finally, calculation of the ultimate lateral load capacity
results in Vu = τf bh = 260 kN (58 kips).

The ultimate load and deformation obtained for this
sample problem are compared in Fig. 10 to the experimental
result, exhibiting good correlation. A photograph of the
specimen at the ultimate state is shown in Fig. 8, depicting a
pronounced shear failure on the face of the column. As a
second example, the ultimate deformation and load are
determined for Specimen 16 in Table 1.

The iteration for this example results in εc = –0.00135 with
Mode 2 governing, where

while the other failure conditions are satisfied. As a result,
the ultimate deformation is determined as: γ = γf + γs = 0.009
with a lateral force of Vu = τf bh = 364 kN (82 kips), both
values nearly perfectly correlated to the experimental result, as
seen in Fig. 11. Note that few iterations are required for Step 2
of the analytical procedure. For all the column specimens
studied in this investigation, only two or three iterations were
required to achieve convergence. To avoid the iteration
process, it is also possible to solve Eq. (23) by deriving
different equations dependent only on the yield states of the
compressive and tensile bars. However, the authors found
Eq. (23) more efficient to apply as a general equation and
applicable for all the stress-strain conditions.

The ultimate deformation estimation approach was employed
for all specimens in Table 1. Comparisons between the
experimental and analysis are plotted in Fig. 11, indicating
consistently accurate correlations. Because the shear capacity,
obtained from the analysis, is based on the section moment
capacity without consideration of geometrical nonlinearity,
the P-Δ effect due to drift is determined and employed for the
flexural columns, which reduces the calculated shear
capacity. Failure modes are determined and given in Table 1
for all the reinforced concrete columns specimens.

CONCLUSIONS
An analytical approach was developed to estimate the

ultimate deformation and load capacity of reinforced
concrete columns based on a simplified axial-shear-flexure
interaction approach. Shear failure was the main failure
criteria for both flexure- and shear-dominant specimens. In
this approach, the concrete compression softening factor was

employed only within the MCFT-based shear model. Axial
strain and concrete compression strain were the two main
parameters common to both the shear and axial models.
Three failure modes were defined as the main ultimate state
conditions: shear failure at the cracks, loss of concrete
compression strength before the peak, and finally shear-
compression failure when ε2 = εc′. The ultimate deformation
and load capacity results obtained by the new approach were
verified against experimental data; consistent correlations
between the analytical and experimental results for a series
of reinforced concrete columns were attained.
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