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Closed-Form Stiffness Matrix for the Four-Node
Quadrilateral Element with a Fully Populated

Material Stiffness
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Abstract: This technical note presents closed-form finite-element stiffness formulations for the four-node quadrilateral element with a
fully populated material stiffness, which is required for the nonlinear analysis of reinforced concrete membrane structures. With the
material stiffness matrix accounting for anisotropy of the materials and prestrain effects, the developed closed-form element stiffness can
be incorporated into a nonlinear finite-element algorithm. Through use of the developed explicit expressions, the examples provided show
that the computational effort required to form the stiffness matrix is greatly reduced, compared to either the conventional numerical
integration scheme or the elastic-material-stiffness-oriented Griffths’ FORTRAN subroutine.
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Introduction

The preference for using the closed-form stiffness matrices in
finite-element analysis has long been recognized, while the con-
ventional numerical integration method has been widely em-
ployed mainly because of its simplicity. In addition to the danger
of matrix rank deficiency due to the use of insufficient integration
points, the computational effort in forming the stiffness matrix
will be of much importance, particularly in an h-adaptive finite-
element procedure in which the shape of individual elements are
often distorted in adaptively regenerated meshes �Lee and Hobbs
1998�. Thus, the gain in computational efficiency by using a
closed-form stiffness matrix instead of the conventional numeri-
cal integration scheme is of interest for many researchers.

For some displacement type elements, the presence of the ra-
tional terms �due to nonconstant Jacobian’s determinant in the
denominator� in the integrand leads to difficulty in obtaining
closed-form �exact integration� expressions for the stiffness ma-
trices. Specifically, for the four-node quadrilateral element,
Griffths �1994� proposed a FORTRAN subroutine for calculation
of the stiffness matrix for the linear elastic isotropic material.

However, to reflect the nonlinear behavior of reinforced con-
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crete, especially after cracking, the material stiffness must be
constructed according to an appropriate set of constitutive rela-
tions and the type of stiffness modules employed. A realistic set
of formulations were reported in detail by Vecchio �1990�, which
were based on the modified compression field theory �MCFT�
�Vecchio and Collins 1986� and assumed a secant stiffness ap-
proach. In doing so, compression softening and hardening, ten-
sion stiffening and softening, as well as curvilinear response
can be realistically and easily taken into account. The resulting
material stiffness matrix will be usually fully populated �3 by 3�.

This technical note presents a calculation procedure by which
the closed-form stiffness matrix for the four-node quadrilateral
element with a fully populated material stiffness can be obtained.
The expressions are derived by expanding and simplifying the
four terms in the two by two Gauss quadrature, with the help
of the computer algebra systems for the algebraic operations.
In this aspect, this work is reminiscent of Griffths’ FORTRAN
subroutine.

Element Stiffness Matrix Calculations

With the material stiffness matrix constructed, one can evaluate
the element stiffness matrix using a standard procedure for dis-
placement type of elements. For completeness and to facilitate the
derivation of the explicit expression, a brief description of this
specific bilinear four-node quadrilateral element will be given
first. While the formulations will be derived in closed form, de-
pendent on nodal coordinates and material coefficients only, the
concept of isoparametric element is used to describe the proce-
dure of derivation.

For a four-node quadrilateral element shown in Fig. 1, the
Jacobian matrix J for the isoparametric mapping between global

and natural coordinate systems can be expressed as
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J = �J11 J12

J21 J22
� = ��i

Ni,�xi �
i

Ni,�yi

�
i

Ni,�xi �
i

Ni,�yi� �1�

where Ni�shape functions in natural coordinate system and are of
the following form

Ni = �1 + ��i��1 + ��i� �2�

The stiffness matrix K can be written as

K =�
Ve

	B
T	D
	B
d�vol� �3�

Here 	B
= 	B1 B2 B3 B4 
, with

	Bi
 = �Ni,x 0

0 Ni,y

Ni,y Ni,x
� �4�

Ni,x = �J22 � Ni,� − J12 � Ni,��/det J �5�

Ni,y = �J11 � Ni,� − J21 � Ni,��/det J �6�

Now, it is apparent that the difficulty in the exact integration is the
presence of a rational term in the integrand of element stiffness
matrix, due to nonconstant Jacobian’s determinant in the denomi-
nator �unlike triangular and rectangular elements where it is twice
the area�.

The numerical integration element stiffness matrix can be cal-
culated as

K = �
i=1

n

�
j=1

n

wij�	B
T	D
	B
�ij �7�

where the subscripts i and j index the integration points.
To reduce the computational effort, some preliminary opera-

tions are performed before the detailed calculation procedure,
which include grouping of the stiffness matrix’s entries, descrip-
tion of coordinate transformations, and analysis of matrix pro-
duct results. This simplification and decomposition is also neces-
sary to cast the expressions and procedures in a form suitable for
documentation.

Due to symmetry, only those entries on and below the
main diagonal need to be calculated. Further, it is advanta-
geous to form the matrix product �	B
T	D
	B
� at each of the

Fig. 1. Schematic four-node quadrilateral element
Gaussian points while avoiding multiplication by zero since the
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strain–displacement matrix 	B
 contains many zero entries. In a
partitioned-matrix form, the product can be written as

	B
T	D
	B
 = �Sxx Sxy

Sxy Syy
� �8�

in which

�Sxx = D11Nx
TNx + D13�Nx

TNy + Ny
TNx� + D33Ny

TNy

Sxy = D13Nx
TNx + D12Nx

TNy + D33Ny
TNx + D23Ny

TNy

Syy = D33Nx
TNx + D23�Nx

TNy + Ny
TNx� + D22Ny

TNy

�9�

where Nx and Ny�row vectors that contain the partial derivatives
of the shape functions with respect to x and y, respectively. Based
on the character of freedoms included, the matrix entries can be
split into six groups, as originally given by Griffths and shown
below

K = �
k11

k21 k22

k31 k32 k33

k41 k42 k43 k44

k51 k52 k53 k54 k55

k61 k62 k63 k64 k65 k66

k71 k72 k73 k74 k75 k76 k77

k81 k82 k83 k84 k85 k86 k87 k88

�
⇒ �

A

B A

C D A

D C B A

E F C D A

F E D C B A

C D E F C D A

D C F E D C B A

� �10�

If one expands the matrices in Eq. �9�, it will be found that each
group will contain distinct combinations of product Nm,xNn,y. With
detailed characters given in Table 1, it can then be seen that the
key calculation in determination of stiffness terms will be in the
expressions for these products included. By expanding and sim-
plifying the terms in two by two Gauss quadrature summation, all

Table 1. Grouping of Element Stiffness Terms

Group Freedom character Stiffness terms
Products
included

A Parallel freedoms
at the same node

k11k22k33k44k55k66k77k88 Ni,x
2 ,Ni,y

2

B Orthogonal freedoms
at the same node

k21k43k65k87 Ni,xNi,y

C Parallel freedoms
at the adjacent node

k31k42k53k64k75k86k71k82 Ni,xNi+1,x,

Ni,yNi+1,y

D Orthogonal freedoms
at the adjacent node

k32k41k54k63k76k85k72k81 Ni,xNi+1,y,

Ni,yNi+1,x

E Parallel freedoms
at the opposite node

k51k62k73k84 Ni,xNi+2,x,

Ni,yNi+2,y

F Orthogonal freedoms
at the opposite node

k52k61k74k83 Ni,xNi+2,y,

Ni,yNi+2,x
products Nm,xNn,y are of the form
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1

2
�A2 · s1 + f1 · t1

3A2
2 − f1

2 +
A2 · s2 + f2 · t2

3A2
2 − f2

2  �11�

where

A2 = �x1 − x3� · �y2 − y4� − �y1 − y3� · �x2 − x4�

= twice the area of the element �12�

f1 = �x1 + x3� · �y2 − y4� − �y1 + y3� · �x2 − x4� + 2 · �x2y4 − y2x4�

�13�

f2 = �x3 − x1� · �y2 + y4� − �y3 − y1� · �x2 + x4� + 2�x1y3 − y1x3�

�14�

All other coefficients in Eq. �11� will be formulated only for the
defined parent product within each group and remaining products
can then be calculated through two nodal coordinate transforma-
tions as described below

T1: �x1,y1� ⇒ �x2,y2� ⇒ �x3,y3� ⇒ �x4,y4� ⇒ �x1,y1�

T3: �xi,yi� ⇒ �yi,xi�

Note that transformation T1 will affect the terms f in Eq. �11�, in
addition to s and t. All detailed calculations are described below,
in terms of groups defined in Table 1.

Group A with parent N1,x
2

s1 = 2�y4 − y2�2, s2 = �y2 − y3�2 + �y3 − y4�2 + �y4 − y2�2

�15�

t1 = − s1/2, t2 = �y2 − y3�2 − �y3 − y4�2 �16�

Ni+1,x
2 is then computed from Ni,x

2 through a T1 transformation
while the T3 transformation is used when computing Ni,y

2 from
Ni,x

2 .
Group B with parent N1,xN1,y

s1 = 2�y4 − y2��x2 − x4�

s2 = x2�y4 − 2y2 + y3� + x3�y2 − 2y3 + y4� + x4�y2 − 2y4 + y3�

�17�

t1 = − s1/2, t2 = x2�y3 − y2� + x3�y2 − y4� + x4�y4 − y3� �18�

Ni+1,xNi+1,y is then computed from Ni,xNi,y through a T1 transfor-
mation.

Group C with parent N1,xN2,x

Fig. 2. Problem 1: cantilever beam under end shear
s1 = �y2 − y4��2y1 − y3 − y2�, s2 = �y3 − y1��2y4 − y3 − y2� �19�
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t1 = �y2 − y4��y2 − y1�, t2 = �y3 − y1��y3 − y4� �20�

Ni+1,xNi+2,x is then computed from Ni,xNi+1,x through a T1 trans-
formation while the T3 transformation is used when computing
Ni,yNi+1,y from Ni,xNi+1,x.

Group D with parent N1,xN2,y

s1 = �y2 − y4��x2 − 2x1 + x3�, s2 = �x3 − x1��y2 − 2y4 + y3� �21�

t1 = �y2 − y4��x1 − x2�, t2 = �x3 − x1��y4 − y3� �22�

Ni+1,xNi+2,y is then computed from Ni,xNi+1,y through a T1 trans-
formation while the T3 transformation is used when computing
Ni,yNi+1,x from Ni,xNi+1,y.

Group E with parent N1,xN3,x

s1 = − �y2 − y4�2

s2 = �y3 + y1��y4 + y2� − 2�y2 − y4�2 − 2�y1y3 + y2y4� �23�

t1 = 0, t2 = �y2 − y4��y1 − y2 + y3 − y4� �24�

Ni+1,xNi+3,x is then computed from Ni,xNi+2,x through a T1 trans-
formation while the T3 transformation is used when computing
Ni,yNi+2,y from Ni,xNi+2,x.

Group F with parent N1,xN3,y

s1 = �y2 − y4��x2 − x4�

s2 = �x4 − x2��y4 − y2� + �x2 − x1��y2 − y3� + �x4 − x1��y4 − y3� �25�

t1 = 0, t2 = �x2 − x1��y2 − y3� + �x4 − x1��y3 − y4� �26�

Ni+1,xNi+3,y is then computed from Ni,xNi+2,y through a T1 trans-
formation while the T3 transformation is used when computing
Ni,yNi+2,x from Ni,xNi+2,y.

Having calculated these preceding products Nm,xNn,y, one can
readily evaluate the stiffness matrix entries by using Eq. �9�. For
example

Table 2. Efficiency Test in Problem 1

Scheme
CPU
�s�

Speed
ratio

Gauss quadrature 0.5470 1.0

Griffths subroutine 0.2190 2.5

Proposed formulation 0.1870 2.9

Fig. 3. Problem 2: panel specimen PB21
006



k47 = D13N2,xN4,x + D12N4,xN2,y + D33N4,y
T N2,x + D23N2,y

T N4,y

�27�

Note that the degrees of freedoms are numbered in the manner as
shown in Fig. 1.

Efficiency Tests

To assess the computational performance of the explicit formula-
tions presented, this section will present two problems for com-
parison and discussion.
1. Problem 1: Linear elastic element. Consider a cantilever

beam under shear force, as shown in Fig. 2. This problem is
analyzed by five distorted quadrilaterals which are linear
elastic elements. The computational efficiency of the devel-
oped formulation is compared to both the conventional
Gaussian quadrature scheme and Griffths’ procedure, in
terms of CPU time.

To avoid the computational overhead associated with
other processes, such as assembly, only the element stiffness
formation is timed. In addition, the stiffness matrix is evalu-
ated repeatedly up to 5,000 times for all five different quad-
rilaterals. Table 2 shows the CPU time logged on a scalar
machine and the speedup ratio calculated. The results ob-
tained indicate that the computational effort required to form
the stiffness matrix is greatly reduced by using the developed
procedure, compared to either the conventional numerical in-
tegration scheme or the elastic-material-stiffness-oriented
Griffths’ FORTRAN subroutine.

2. Problem 2: Nonlinear anisotropic element. This problem ex-
amines the panel specimen tested by Bhide and Collins and
analyzed by Vecchio. As given in Fig. 3, the finite element
used is rectangular in shape and with nonlinear anisotropy in
material. The material properties and specified uniform stress
conditions follow those given in the reference �Vecchio
1990�.

The task is to compare the CPU time required to form the
element stiffness matrices using different schemes. Among
these schemes are the rectangular exact integration scheme,

Table 3. Efficiency Test in Problem 2

CPU time
�s�

Number
of evaluation

Gauss
quadrature

Exact
integration

Proposed
formulation

Speed
ratioa

5,000 0.1100 0.0083 0.0468 1:13.3:2.4

10,000 0.2180 0.0160 0.0780 1:13.7:2.8

100,000 2.1870 0.1460 0.7810 1:14.9:2.8
a

Fig. 4. Element stiffness mat
Calculated in terms of “1:m :n” with Gauss scheme being the reference.
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the Gaussian quadrature scheme, and the proposed closed-
form formulation. All schemes produce the same element
stiffness matrix in Fig. 4 �round to the first digit after the
decimal place�.

The CPU time logged, given in Table 3, shows that the de-
veloped scheme is slower than the rectangular-element-oriented
exact integration scheme but again much faster than the numerical
integration scheme. Note, however, that the rectangular element
is not suitable in many applications; for example, in nonuni-
form mesh topologies, or where nonlinear geometry effects result
in mesh regeneration. For such situations, the proposed quadri-
lateral element can effectively be substituted. Also, though the
MCFT relations are employed in the construction of material
stiffness, the element stiffness formulations presented are such
that any realistic set of constitutive relations can be easily
implemented.

Conclusions

In this work, an explicit procedure for the closed-form element
stiffness matrix is derived for the four-node quadrilateral element
with a fully populated material stiffness, which realistically mod-
els the nonlinear behavior of reinforced concrete membrane struc-
tures. The algebraic expressions are based on expanding and sim-
plifying the terms in the summation of the numerical integration.
While the formulation elegance and computational effort are ar-
gued to be of primary importance, the developed scheme has a
compact expression and good computational efficiency. It is be-
lieved that the formulations are advantageous in situations where
the closed-form rectangular element cannot be used.
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