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This paper summarizes the results of over 100 pure shear tests on
reinforced concrete panels. The ACI approach for predicting shear
strength as the sum of a diagonal cracking load and a 45-degree truss
model predicts the strength of these panels poorly, with an average
experimental-over-predicted shear strength ratio of 1.40 with a
coefficient of variation of 46.7%. Based on a subset of these exper-
iments, an expressive but relatively complex analysis method called
the modified compression field theory (MCFT) was developed in the
1980s that is able to predict full load deformation relationships. This
theory can predict the shear strength of these panels with an average
shear strength ratio of 1.01 and a coefficient of variation (COV) of
only 12.2%. This paper presents a new simplified analysis method
that can predict the strength of these panels in a method suitable
for “back of the envelope” calculations. This new method gives an
average shear strength ratio of 1.11 with a COV of 13.0%. The
application of this new simplified method to panels is demonstrated
with numerical examples.
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INTRODUCTION
Even though the behavior of reinforced concrete in shear

has been studied for more than 100 years, the problem of
determining the shear strength of reinforced concrete beams
remains open to discussion. Thus, the shear strengths
predicted by different current design codes1-5 for a particular
beam section can vary by factors of more than 2. In contrast,
the flexural strengths predicted by these same codes are
unlikely to vary by more than 10%. For flexure, the plane
sections hypothesis forms the basis of a universally
accepted, simple, rational theory for predicting flexural
strength. In addition, simple experiments can be performed
on reinforced concrete beams subjected to pure flexure and
the clear results from such tests have been used to improve
the theory. In shear, there is no agreed basis for a rational
theory, and experiments cannot be conducted on reinforced
concrete beams subjected to pure shear.

A traditional shear test on a reinforced concrete beam is
depicted in Fig. 1(a). The region of the beam between the
two point loads is subjected to pure flexure, whereas the
shear spans of the beam are subjected to constant shear and
linearly varying moment. Because the behavior of this
member is changing from section to section along the shear
span, it is difficult to use the results of such a test to develop
a general theory for shear behavior. Thus, if a relationship is
sought between the magnitude of the shear force and the
strains in the stirrups, it will be found that the strains are
different for every stirrup and also differ over the height of
each stirrup. In addition, the high net vertical compressive
stresses fz, called “clamping stresses,” near the point loads
and reactions cause stirrup strains in these locations to be
close to zero.

The modified compression field theory6 (MCFT) was
developed by observing the response of a large number of
reinforced concrete elements loaded in pure shear or in shear
combined with axial stress. While such tests were more difficult
to perform, they gave experimental results that clearly illustrated
the fundamental behavior of reinforced concrete in shear.
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The problem addressed by the MCFT is to predict the
relationships between the axial and shear stresses applied to
a membrane element, such as that shown in Fig. 1(b), and the
resulting axial and shear strains. If the theory can accurately
predict the behavior of such an element, it can be used as the
basis for a range of analytical models. The most accurate, but
most complex, of these models involves representing the
structure as an array of biaxial elements and then conducting
a nonlinear finite element analysis7 using a computer
program8 (refer to Fig.1(b)). This model gives accurate
results both in flexural regions and in disturbed regions
where high clamping stresses can significantly increase
shear strength. If one assumes that plane sections remain
plane and that the vertical clamping stresses are negligibly
small, one can model one section of a beam as a vertical
stack of biaxial elements. This is the basis of program
Response-2000,9 which is capable of predicting the shear stress
distribution over the height of the beam and the shear force-
shear deformation relationship of the section (Fig. 1(c)).
Finally, reasonably simple expressions for the shear strength of
a section can be derived if just one biaxial element within the

web of the section is considered and the shear stress is assumed
to remain constant over the depth of the web. This is the basis
of the sectional design model for shear10 included in the
AASHTO LRFD Bridge Design Specifications2 (Fig. 1(d)).

In the AASHTO LRFD shear design method, the shear
strength of a section is a function of the two parameters β and
θ. The inclination θ of the diagonal compressive stresses in
the web, and the factor for tensile stresses in the cracked
concrete, β, both depend on the longitudinal straining of the
web, εx. For members without transverse reinforcement,
β and θ values calculated from the MCFT are given as
functions of εx and the crack spacing sxe in a table. A
separate table is given for the β and θ values for members
with transverse reinforcement.

Shear design procedures should be simple to understand
and to use not only for ease of calculation but, more critically,
for ease of comprehension. The engineer should be able to
give physical significance to the parameters being calculated
and to understand why they are important. If the procedures
are simple enough, an experienced engineer should be able
to perform at least preliminary calculations on the “back of
an envelope.” While the use of the required tables in the
AASHTO LRFD shear design method is straightforward, it
is not possible to remember the values in the tables for “back
of the envelope” calculations. Further, many engineers prefer
simple equations to tables because they give a continuous range
of values and are more convenient for spreadsheet calculations.
In this paper, simple equations for β and θ will be determined
from the basic expressions of the MCFT. In addition, the
paper will summarize the observed shear strengths of 102
reinforced concrete elements tested in shear and show how,
by the use of the simple equations, the strength of these
elements can be predicted accurately.

RESEARCH SIGNIFICANCE
The research reported in this paper has resulted in a significant

simplification of the MCFT. It is shown that this simplified
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Fig. 2—Equations of modified compression field theory.
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MCFT is capable of predicting the shear strength of a wide
range of reinforced concrete elements with almost the same
accuracy as the full theory. The expressions developed in the
paper can form the basis of a simple, general, and accurate
shear design method for reinforced concrete members.

BACKGROUND TO MCFT
The original shear design procedure11,12 for reinforced

concrete, which was developed more than 100 years ago,
assumed that cracked concrete in the web of a beam resisted
shear stress v only by diagonal compressive stresses f2 and
that these stresses were inclined at an angle of 45 degrees to
the longitudinal axis of the member. The diagonal compressive
stresses push apart the flanges of the beam causing tension in
the stirrups, which are responsible for holding together the
two flanges. After the stirrups yield, the beam is predicted to
be capable of resisting a shear stress of ρz fy, where ρz is the
ratio of the stirrup area to the web area, ρz = Av/(bws), and fy
is the yield stress of the stirrups. Because the 45-degree truss
model ignores any contributions of the tensile strength of the
concrete, it can give very conservative estimates of shear
strength for members with small amounts of stirrups.
Because of this, for the last 40 years, the ACI
specifications1,13 have taken the shear strength of the web of
a beam as ρz fy + vc where the concrete contribution vc is
taken as the shear stress at which diagonal cracks form, vcr .
Axial tension reduces vcr and, hence, is predicted to decrease
shear strength whereas axial compression or prestressing
increases vcr and, hence, is predicted to increase shear strength.

During the 1970s and 1980s, European researchers
focused attention on the fact that, in general, θ is not 45
degrees. From a truss model with diagonals inclined at an
angle of θ, the shear stress capacity of a web is predicted to
be ρz fycotθ. The difficulty is to determine an appropriate
value of θ. Models14,15 based on the theory of plasticity were
developed allowed the engineer to select the value of θ.
Because concrete shear failures are brittle, however, it was
necessary to place somewhat arbitrary limits on θ (for
example, θ > 30 degrees) and on f2 (for example, f2 < 0.6fc′
to avoid unsafe predictions.

The development of the compression field theory16,17

(CFT) was a significant step toward a more rational theory
for shear. Unlike traditional models, the theory uses the
strain conditions in the web to determine the inclination θ of

the diagonal compressive stresses. The relationship is that
tan2θ = (εx + ε2)/(εz + ε2), where εx is the longitudinal strain
in the web (tensile positive, compressive negative), εz is the
transverse tensile strain in the web, and ε2 is the diagonal
compressive strain. Because εx is usually much smaller than
εz, the angle θ can be considerably less than 45 degrees,
which increases the predicted shear strength of the web.
Prestressing or axial compression can significantly reduce εx
and, hence, is predicted to lower the angle θ and thus
increase shear strength.

To study the relationship between the diagonal compressive
stress f2 and the diagonal compressive strain ε2, Vecchio and
Collins18 tested 30 reinforced concrete elements under
biaxial stresses in an innovative testing machine. They found
that f2 is a function not only of ε2 but also of the coexisting
principal tensile strain ε1. They also found that even after
extensive diagonal cracking, tensile stresses still existed in
the concrete between the cracks. Combined with shear
stresses on the crack faces, vci, these tensile stresses
increased the ability of the cracked concrete to resist shear.
When the CFT relationships were modified to account for
the average principal tensile stresses in the cracked concrete,
f1, the equilibrium, geometric, and constitutive relationships
of the MCFT6 were obtained. Figure 2 gives the 15 equations
used19 in the MCFT. Note that, in this context, average
strains refer to strains measured over base lengths at least
equal to the crack spacing. Average stresses are calculated
considering effects both at and between the cracks and are
distinct from stresses calculated at cracks. 

Solving the equations of the MCFT given in Fig. 2 is, of
course, very tedious if done by hand, but is quite straightforward
with an appropriate computer program. Membrane-20009 is
such a program and its ability to predict the load-deformation
response of reinforced concrete membrane elements is
demonstrated in Fig. 3. The six elements shown in this figure
all contained approximately 3% of longitudinal reinforcement
and were loaded in pure shear. The SE elements were tested
at the University of Toronto20,21 while the A and B elements
were tested at the University of Houston.22 Note that as the
amount of transverse reinforcement was increased, the post-
cracking shear stiffness and the shear strength of the
elements increased, but the ductility of the elements
decreased. It can be seen that there is excellent agreement
between the lines representing the response predicted by the
MCFT and the points showing the measured response.

DERIVATION OF SIMPLIFIED MCFT
The simplified version of the MCFT is a procedure by

which the shear strength of an element can be conveniently
computed. Because the element will be used to model a
section in the flexural region of a beam, it is assumed that the
clamping stresses fz will be negligibly small (Fig. 1(d)). For
the transverse reinforcement to yield at failure, εz will need
to be greater than approximately 0.002, while to crush the
concrete, ε2 will need to be approximately 0.002. If εx is also
equal to 0.002 at failure, Eq. (3), (6), (7), (13), and (14)
predict that the maximum shear stress will be approximately
0.28fc′ , whereas for very low values of εx, the shear stress at
failure is predicted to reach approximately 0.32fc′ . As a conser-
vative simplification, it will be assumed that if failure occurs
before yielding of the transverse reinforcement, the failure
shear stress will be 0.25fc′ . For failures occurring below this
shear stress level, it will be assumed that at failure both fsz

Fig. 3—Comparison of predicted and observed shear stress-
shear strain response of six elements.
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and fszcr are equal to the yield stress of the transverse rein-
forcement, which will be called fy.

Equation (5) given in Fig. 2 can be derived by considering
the sum of the forces in the z-direction for the free body
diagram shown in Fig. 4. For fz = 0 and fszcr = fy, this equation
can be rearranged to give

(16)

In a similar fashion, Eq. (2) can be rearranged to give

(17)

Both of these equations can be expressed as

(18)

From Eq. (14), (17), and (18), the value of β is given by

(19)

Similarly from Eq. (15), (16), and (18), the value of β
must satisfy

(20)

The crack width w is calculated as the product of the crack
spacing sθ and the principal tensile strain ε1. The term ag
represents the maximum coarse aggregate size in mm. The
crack spacing depends on the crack control characteristics of
the x-direction reinforcement, which is expressed by the
parameter sx, and the crack control characteristics of the
z-direction reinforcement, which is expressed by sz (Eq. (10)).
As a simplification, sx can be taken as the vertical distance
between bars aligned in the x-direction and sz can be taken as
the horizontal spacing between vertical bars aligned in
the z-direction. For elements with no transverse reinforcement,
sθ will equal sx/sinθ and Eq. (20) can be expressed as

(21)

where

(22)

If in.-lb units are being used, the 0.18 in Eq. (21) should be
replaced by 2.17, while the 35 and 16 in Eq. (22) should be
replaced with 1.38 and 0.63, respectively. In elements made
from high-strength concrete ( fc′  > 70 MPa [10,000 psi]),
cracks tend to break through the aggregate rather than
passing around them; in such cases, ag should be taken as zero.

For members without transverse reinforcement, the
highest value of β and, hence, the maximum post-cracking
shear capacity, will occur when Eq. (19) and (21) give the

v vci ρz fy cot θ+=

v f1cot θ ρz fycot θ+=

v vc vs β f ′c ρz fy cot θ+=+=

β 0.33 cot θ

1 500ε1+
---------------------------=

β 0.18
0.31 24w ag 16+( )+
--------------------------------------------------≤

β 0.18
0.31 0.686sxeε1 sin θ⁄+
----------------------------------------------------------≤

sxe
35sx

ag 16+
-----------------=

same value for β.23 This requirement results in the following
equation

(23)

The manner in which this equation relates the inclination
θ of the diagonal compressive stresses to the principal tensile
strain ε1 for different values of the crack spacing parameter
sxe is shown in Fig. 5.

To relate the longitudinal strain εx to ε1, Eq. (6) and (7) can
be rearranged to give

tan θ
0.568 1.258sxe ε1 θsin⁄+

1 500ε1+
------------------------------------------------------------=

Fig. 4—Transmission of forces across cracks.

Fig. 5—Determination of beta and theta values for elements
not containing transverse reinforcement.
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(24)

The principal compressive strain ε2 depends on the
principal compressive stress f2.   When ρz and fz are zero,
Eq. (2) and (3) can be rearranged to give

f2 = f1cot2θ (25)

Because the compressive stresses for these elements will be
small, it is sufficiently accurate to assume that ε2 equals
f2/Ec, and that Ec can be taken as 4950  in MPa units.
Equation (24) then becomes

(26)

The manner in which this geometric equation relates ε1
and θ for different values of εx is shown in Fig. 5. The
intersection points of the lines representing given values
of εx and sxe define the values of θ and ε1, which will
simultaneously solve both Eq. (23) and (26). The corresponding

ε1 εx 1 cot 2 θ+( ) ε2+ cot 2 θ=

f ′c

ε1 εx 1 cot 2 θ+( ) cot 4 θ

15,000 1 500ε1+( )
-------------------------------------------------+=

values of β, which can be found from Eq. (19), are shown in
Fig. 5. It can be seen that as the crack spacing sxe increases,
the values of β and, hence, the shear strengths, decrease. The
observed fact is that large reinforced beams that do not
contain transverse reinforcement fail at lower shear stresses
than geometrically similar smaller beams.24-26 is known as
the size effect in shear. It is of interest that the predictions of
the MCFT (for example, that the size effect is related to the
distance between the layers of longitudinal reinforcement
rather than the overall size of the element) agree well with
the results of the extensive experimental studies27 on size
effect done in the years since the theory was first formulated.

The MCFT β values for elements without transverse
reinforcement depend on both the longitudinal strain εx and
the crack spacing parameter sxe. The authors refer to these
two effects as the “strain effect factor” and the “size effect
factor.” The two factors are not really independent, but in the
simplified version of the MCFT, this interdependence of the
two factors is ignored and it is assumed that β can be taken
as simply the product of a strain factor and a size factor.
Equation (27) is the suggested expression for β. The β-values
given by this equation are compared to the values from the
MCFT in Fig. 6. It can be seen that for all but very small
values of εx combined with small values of sxe, the simple
equation gives values that are somewhat conservative.

(27)

Equation (27) is to be used with a concrete strength, in
MPa, and sxe, in millimeters. If in.-lb units are used for sxe,
the 1300 in Eq. (27) becomes 51 and the 1000 becomes 39.
Further, for use with concrete strengths in psi, the 0.4
becomes 4.8.

The simplified MCFT uses the following expression for
the angle of inclination θ

(28)

If in.-lb units are used for sxe, the 2500 in Eq. (28) becomes
100. Equation (28) again assumes that the relationship is
simply the product of a strain factor and a size factor. The
angles predicted by this equation are compared with those
derived from the MCFT in Fig. 6. For members without
transverse reinforcement, it is conservative to underestimate
θ, as this will increase the calculated stress in the longitudinal
reinforcement. It can be seen from Fig. 6 that the θ-values given
by Eq. (28) are conservative for nearly all of the different
combinations of values of εx and sxe.

As elements containing both longitudinal and transverse
reinforcement approach shear failure, the MCFT predicts
that there can be a substantial change in the relative magnitudes
of vc and vs. Typically, after yielding of the transverse
reinforcement, the angle θ will become smaller, causing vs
to increase. At the same time, the resulting large increase in
ε1 will decrease vc. A substantial decrease in θ will also
cause a major increase in the stress in the longitudinal
reinforcement. A conservative approach for determining θ
for the simplified MCFT is to consider the value of θ at
which the MCFT predicts that vc has its maximum contribution
to the strength. Also note that it would be convenient if the

β 0.4
1 1500εx+
-------------------------- 1300

1000 sxe+
-------------------------⋅=

θ 29 deg 7000εx+( ) 0.88
sxe

2500
------------+ 

  75 deg≤=

Fig. 6—Comparison of values for theta and beta given by
simple equations with values determined from MCFT for
elements without transverse reinforcement.
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same expressions could be used both for members with and
for members without transverse reinforcement. Hence, Fig. 7
compares the values of θ associated with maximum vc with
those predicted by Eq. (28). It can be seen that the agreement
is reasonable. Note that, for these elements, a high value of
θ is conservative as it decreases vs. Also note that for
elements containing both longitudinal and transverse
reinforcement, the spacing of the diagonal cracks will
typically be less than 300 mm (12 in.) and, hence, it is
conservative to take sxe as 300 mm (12 in.) in Eq. (27) and
(28). Figure 7 also compares the corresponding β-values
predicted by the MCFT for these elements with the values
given by Eq. (27). It can be seen that while the β-values
predicted by the simple equation are conservative over much
of the range of possible εx-values, they are somewhat
unconservative for very low values of εx. In this range,
however, the unconservative estimate for β will be partly
compensated by the conservative estimate for θ.

SIMPLIFIED MCFT STRENGTH
PREDICTIONS FOR ELEMENTS

To illustrate how the simplified MCFT can be used to
predict shear strength, consider the series of elements whose
load-deformation plots are shown in Fig. 3. It will be recalled
that these elements were loaded in pure shear and all
contained approximately 3% of longitudinal reinforcement.
It is desired to predict how the shear strength will increase as
the amount of transverse reinforcement is increased. As an
example, the case where the amount of transverse reinforce-
ment is such that ρz fy equals 2 MPa (290 psi) is used. The
calculations are begun by estimating the value of εx corre-
sponding to the maximum capacity of the element. Thus, one
might assume εx will be 1.0 × 10–3. Using the average sxe
value for these elements, which is 158 mm (6.2 in.), Eq. (27)
and (28) then predict that β equals 0.1796 and θ equals 34.0
degrees. The average concrete strength is 42.6 MPa (6180 psi)
and Eq. (18) then predicts that the shear strength of the
element will equal

v = vc + vs = 1.172 + 2.97= 4.14 MPa (600 psi)

If the longitudinal reinforcement is not yielding, Eq. (1)
and (11) can be used to determine the value of longitudinal
strain εx, which will correspond to this shear stress. As the
applied axial stress fx is zero and, as f1 can be expressed as
vc /cotθ, these equations give

(29)

As 0.90 × 10–3 does not equal the assumed value of 1.0
× 10–3, a new estimate of εx needs to be made and the
calculations repeated. Convergence is reached when εx =
0.939 × 10–3. For this value of longitudinal strain, vc =
1.217 MPa (176 psi), θ = 33.6 degrees, and the failure shear
v is predicted to be 4.23 MPa (613 psi). Note that this stress
is below the 0.25fc′  limit and, hence, the assumption that the
transverse reinforcement is yielding at failure is appropriate.

εx
fsx

Es

-----
v cot θ vc cot θ⁄–

Esρx

------------------------------------------= =

4.14 34.0 deg( ) 1.172 cot 34.0 deg( )⁄–cot
200 000, 0.0296⋅

----------------------------------------------------------------------------------------------------= 0.90 10 3–×=

It remains to be checked that the longitudinal reinforcement
can transmit the required stresses across the cracks without
exceeding its yield stress. Because fx = 0 and vci = vc, Eq. (4)
can be rearranged to give

(30)

=  = 277 MPa (40.2 ksi)

As this stress is less than the yield stress of the longitudinal
reinforcement, the x-direction reinforcement is predicted not
to yield at the cracks and, hence, the calculations for this
element are complete.

Repeating the calculations for different values of ρz fy
produced the values plotted in Fig. 8 as the line labeled
“Simplified MCFT.” Note that for this case when ρz fy/fc′
exceeds 0.200, the predicted shear capacity will be governed
by the assumed upper limit on the shear strength of 0.25fc′ .
Also shown in Fig. 8 are the capacities predicted from
program Membrane-2000, which implements the full MCFT
and the shear strengths determined from the experiments. It

fsxcr
v vc+( ) cot θ

ρx

-------------------------------=

4.23 1.27+( ) 33.6 deg( )cot
0.0296

------------------------------------------------------------------

Fig. 7—Comparison of values for theta and beta given by
simple equations with values determined from MCFT for
elements with transverse reinforcement.
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can be seen that, for these elements, the predictions of the
simplified MCFT are close to those of the MCFT and agree
well with the experimental results. As expected, the predictions
of the 45-degree truss model are very conservative.
However, if the ACI approach of taking the shear capacity as
the sum of the diagonal cracking shear, shown at 0.33
(4  in psi units) in Fig. 8, and the 45-degree truss value
is followed, accurate estimates of the shear capacities are
obtained. In the ACI approach, vs is limited to a shear stress
of 0.66  (8  in psi units), which results in a maximum
predicted v/fc′  ratio of 0.153. It can be seen from Fig. 8 that
this is a very conservative upper limit on shear capacity.

f ′c
f ′c

f ′c f ′c

The elements in Fig. 8 all contained a substantial amount
of longitudinal reinforcement and, hence, yielding of this
x-direction reinforcement did not govern the shear strengths
predicted by the simplified MCFT. To illustrate how
yielding of the longitudinal reinforcement influences shear
strength, a series of elements for which the amount of
longitudinal reinforcement equals the amount of transverse
reinforcement is considered. How the shear strength of these
elements is predicted to increase as the amount of reinforcement
increases will be determined (Fig. 9). The PV elements
shown in this figure were tested by Vecchio and Collins,6

whereas the S elements were tested by Yamaguchi et al.28 As
an example of calculating the strength of these elements,
take the case when ρz and ρx are both equal to 0.79%, which
corresponds to ρz fy = 3 MPa (435 psi). As the x reinforcement
will yield, εx will be greater than the yield strain, which is
1.90 × 10–3, and Eq. (29) will not be applicable. To start the
calculations, assume that εx equals 3.0 × 10–3. Using the
average sxe value for these elements, which is 150 mm (6 in.),
Eq. (27) and (28) predict that β = 0.0822 and θ = 47.0
degrees. For a concrete strength of 31 MPa (4500 psi), the
predicted shear strength from Eq. (18) then becomes

 + 3.00 cot (47.0 deg)

= 0.458 + 2.794 = 3.251 MPa (471 psi)

Equation (30) can then be used to find fsxcr

= 438 MPa (63.5 ksi)

As this predicted value of reinforcement stress exceeds the
yield stress for this steel, which is 380 MPa (55.1 ksi), the
assumed value of εx is not correct. Increasing εx will
decrease the calculated value of fsxcr and it will be found
that εx must be increased to 3.30 × 10–3 before fsxcr is
reduced to the yield stress. At this value of longitudinal
strain, the predicted shear strength of the element is 3.03 MPa
(439 psi).

Repeating the aforementioned calculations for different
amounts of reinforcement produced the values plotted in
Fig. 9 as the line labeled “Simplified MCFT.” Note that the
predicted shear strengths for these elements with equal
reinforcement in the x- and y-directions are essentially
equal to ρz fy, until ρz fy/fc′ reaches 0.25. The predictions
from program Membrane-2000 for the shear strength of
these elements is shown in Fig. 9 by the line labeled
“MCFT.” For the elements where the reinforcement yields
at failure the predictions from the Simplified MCFT are
essentially identical to those from the MCFT, and both are
equal to those from the 45-degree truss model. Further, all
three models agree well with the experimental results. For
such elements with equal x and y reinforcement, it is
unconservative to follow the ACI approach of estimating
failure shear by adding the diagonal cracking shear to the
45-degree truss prediction.

As a final example of using the Simplified MCFT for
predicting the shear strength of elements, consider a series
tested by Bhide and Collins.29,30 As shown in Fig. 10, these

v vc vs 0.0822 31=+=

fsxcr
3.251 0.458+( ) 47.0 deg( )cot

0.0079
------------------------------------------------------------------------=

Fig. 8—Influence of amount of transverse reinforcement
on shear strength of elements containing 2.96% of longitudinal
reinforcement.

Fig. 9—Influence of amount of reinforcement on shear
strength of elements containing equal amounts of longitudinal
and transverse reinforcement.
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specimens contained 2.20% of reinforcement in the x-direction,
no reinforcement in the z-direction, and were loaded under
different combinations of shear and uniaxial tension. The
question being addressed by these tests was “how does
magnitude of tension influence shear capacity?” Once again,
the calculations start by choosing a value of εx, for example,
0.5 × 10–3. For the known value of sxe, which is 63 mm (2.5 in.),
the values of β and θ are found from Eq. (27) and (28) as
0.280 and 29.4 degrees. With β and θ known, the shear
strength v and the concrete contribution vc can then be found
from Eq. (18). In this case, where vs is zero, both v and vc
equal 1.293 MPa (187 psi). If the longitudinal steel does not
yield, the axial tension fx, corresponding to the chosen value
of εx and the resulting values of v, vc, and θ can be determined
by rearranging Eq. (1) and (11) and by recalling that f1 equals
vc /cotθ. This gives

(31)

= 0.022 × 200,000 × 0.5 × 10–3 –1.293cot(29.4 deg)

+ 1.293/cot(29.4 deg) = 2.200 – 2.293 + 0.729

= 0.636 MPa (92 psi)

If the longitudinal steel yields at the crack, however, there
is an upper limit to fx that can be determined by rearranging
Eq. (4) and by recalling that vci equals vc. This gives

(32)

cot(29.4 deg)

Hence, when εx at failure equals 0.5 × 10–3, the failure
shear is 1.293 MPa (187 psi) and the axial tension at failure
is 0.636 MPa (92 psi). Repeating these calculations for
different values of εx gives the interaction line labeled
“Simplified MCFT” in Fig. 10. This interaction line is
concave upward in the region where Eq. (31) governs the
magnitude of fx and is concave down in the region where
Eq. (32) governs.

The shear-axial tension interaction diagram predicted for
the PB elements by program Membrane-2000 is also shown
in Fig. 10. Whereas the MCFT and Simplified MCFT
interaction diagrams have very similar shapes, the
Simplified MCFT is somewhat more conservative than the
MCFT. Both procedures provide conservative estimates of
the observed shear strengths of the elements. Also shown in
Fig. 10 is the reduction in shear capacity due to axial tension
predicted by the ACI approach. For elements without
transverse reinforcement, the shear capacity is predicted to
be equal to the diagonal cracking load. It can be seen in
Fig. 10, however, that this approach greatly overestimates the
detrimental effect of tension on shear strengths. This
figure also suggests that the ACI approach may overestimate
the beneficial effects of compression.31

STRENGTH PREDICTIONS FOR
102 REINFORCED CONCRETE ELEMENTS

Table 1 summarizes essentially all of the experimental
results18,20-22,29-30,32-38 available to the authors for rein-
forced concrete elements loaded in pure shear or shear
combined with uniaxial stress (that is, fz = 0). These 102

fx ρxEsεx v cot θ vc cot ⁄+ θ–=

fx ρx fy v vc+( )cot θ–≤

0.0220 416 1.293 1.293+( )–×≤

9.152 4.587 4.565 MPa 662 psi( )=–≤

elements were loaded using five different testing machines,
in four different research laboratories, in three different
countries. The test specimens ranged in size from 890 x 890
x 70 mm (35 x 35 x 3 in.) to 2510 x 2510 x 140 mm (99 x 99
x 5.5 in.). Concrete strengths ranged from 14.5 to 102 MPa
(2100 to 14,800 psi), whereas the amounts of longitudinal
reinforcement varied from 0.18 to 6.39%. Twenty-nine of
the elements did not contain any transverse reinforcement
and 22 of these were loaded under various combinations of
axial tension and shear. The other 73 elements had amounts
of from 0.18 to 5.24% of transverse reinforcement, with two
of these elements being loaded in combined tension and
shear, and two in combined compression and shear.

Figure 11 compares the observed failure shear of the
elements with the amount of transverse reinforcement.
Recall that the 45-degree truss model predicts that v should
equal ρz fy. For elements containing the same amount of
longitudinal and transverse reinforcement, this prediction is

Fig. 10—Tension-shear interaction for elements with no
transverse reinforcement.

Fig. 11—Influence of amount of transverse reinforcement on
shear strength of elements.
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Table 1—Summary of experimental results

Panel
fc′, 

MPa

Reinforcement
Axial 
load

Vexp/fc′

Vexp/Vpredicted

ρx,
%

fyx, 
MPa

Sx, 
mm ρz fy/fc′ fx/v

Full
MCFT

Simp.
MCFT ACI

Vecchio and Collins18; ag = 6 mm

PV1 34.5 1.79 483 51 0.235 0 0.23 0.93 0.96 1.37
PV2 23.5 0.18 428 51 0.033 0 0.049 1.47 1.41 0.48
PV3 26.6 0.48 662 51 0.120 0 0.115 0.95 0.96 0.63
PV4 26.6 1.03 242 51 0.096 0 0.109 1.12 1.13 0.68
PV5 28.3 0.74 621 102 0.163 0 0.150 0.91 0.92 0.80
PV6 29.8 1.79 266 51 0.159 0 0.153 0.95 0.95 0.84
PV10 14.5 1.79 276 51 0.190 0 0.27 1.06 1.10 1.05
PV11 15.6 1.79 235 51 0.197 0 0.23 0.98 0.98 0.90
PV12 16.0 1.79 469 51 0.075 0 0.196 1.09 1.19 1.24
PV16 21.7 0.74 255 51 0.087 0 0.099 1.12 1.12 0.62
PV18 19.5 1.79 431 51 0.067 0 0.156 1.08 1.08 1.10
PV19 19.0 1.79 458 51 0.112 0 0.21 0.95 1.06 1.10
PV20 19.6 1.79 460 51 0.134 0 0.22 0.93 1.00 1.04
PV21 19.5 1.79 458 51 0.201 0 0.26 0.91 1.03 1.14
PV22 19.6 1.79 458 51 0.327 0 0.31 0.98 1.24 1.38
PV26 21.3 1.79 456 51 0.219 0 0.25 0.88 1.02 1.18
PV27 20.5 1.79 442 51 0.385 0 0.31 0.96 1.24 1.41
PV30 19.1 1.79 437 51 0.249 0 0.27 0.88 1.07 1.18

Bhide and Collins29,30; ag = 9 mm (PB15-27 series with lightweight 
aggregate)
PB11 25.9 1.09 433 90 0 0 0.049 1.02 1.03 0.75
PB12 23.1 1.09 433 90 0 0 0.066 1.28 1.30 0.96
PB4 16.4 1.09 423 90 0 1.00 0.071 1.25 1.35 1.40
PB6 17.7 1.09 425 90 0 1.00 0.065 1.28 1.30 1.33
PB7 20.2 1.09 425 90 0 1.90 0.043 0.97 1.05 1.34
PB8 20.4 1.09 425 90 0 3.00 0.039 0.99 1.08 1.74
PB10 24.0 1.09 433 90 0 5.94 0.023 0.92 0.99 2.10
PB13 23.4 1.09 414 90 0 ∞ 0.201* 1.04 1.06 1.06

PB24 20.4 1.10 407 90 0 ∞ 0.236* 1.08 1.10 1.10

PB15 38.4 2.02 485 45 0 0 0.051 1.02 1.16 0.95
PB16 41.7 2.02 502 45 0 1.96 0.035 0.98 1.13 1.61
PB14 41.1 2.02 489 45 0 3.01 0.037 1.13 1.34 2.39
PB17 41.6 2.02 502 45 0 5.93 0.029 1.04 1.31 3.47
PB27 37.9 2.02 502 45 0 ∞ 0.296* 1.11 1.11 1.11

PB18 25.3 2.20 402 45 0 0 0.067 1.06 1.13 1.02
PB19 20.0 2.20 411 45 0 1.01 0.064 0.98 1.09 1.40
PB20 21.7 2.20 424 45 0 2.04 0.065 1.16 1.33 2.25
PB28 22.7 2.20 426 45 0 1.98 0.067 1.23 1.40 2.32
PB21 21.8 2.20 402 45 0 3.08 0.065 1.26 1.46 3.09
PB22 17.6 2.20 433 45 0 6.09 0.059 1.13 1.38 4.62
PB25 20.6 2.20 414 45 0 ∞ 0.485* 1.10 1.10 1.10

PB29 41.6 2.02 496 45 0 2.02 0.036 1.02 1.15 1.69
PB30 40.04 2.02 496 45 0 2.96 0.037 1.10 1.27 2.29
PB31 43.4 2.02 496 45 0 5.78 0.026 0.97 1.18 3.13

Yamaguchi et al.28; ag = 20 mm

S-21 19.0 4.28 378 150 0.849 0 0.34 0.89 1.37 1.50
S-31 30.2 4.28 378 150 0.535 0 0.28 0.80 1.10 1.52
S-32 30.8 3.38 381 150 0.418 0 0.28 0.87 1.14 1.58
S-33 31.4 2.58 392 150 0.323 0 0.26 0.86 1.04 1.46
S-34 34.6 1.91 418 150 0.230 0 0.21 0.91 0.92 1.25
S-35 34.6 1.33 370 150 0.142 0 0.163 1.15 1.15 0.97
S-41 38.7 4.28 409 150 0.452 0 0.31 0.95 1.23 1.91
S-42 38.7 4.28 409 150 0.452 0 0.33 1.02 1.32 2.06
S-43 41.0 4.28 409 150 0.427 0 0.29 0.91 1.16 1.86
S-44 41.0 4.28 409 150 0.427 0 0.30 0.94 1.19 1.91
S61 60.7 4.28 409 150 0.288 0 0.25 0.90 1.01 1.98
S-62 60.7 4.28 409 150 0.288 0 0.26 0.91 1.03 2.01
S-81 79.7 4.28 409 150 0.220 0 0.20 0.92 0.92 1.82
S-82 79.7 4.28 409 150 0.220 0 0.20 0.92 0.93 1.83

*Tested in pure axial tension, no shear, values are fx/fc′.
Note: 1 MPa = 145 psi, 1 mm = 0.03937 in.

Table 1 (cont.)—Summary of experimental results

Panel
fc′, 

MPa

Reinforcement
Axial 
load

Vexp/fc′

Vexp/Vpredicted

ρx,
%

fyx, 
MPa

Sx, 
mm ρz fy /fc′ fx/v

Full
MCFT

Simp.
MCFT ACI

Andre32; ag = 9 mm; KP ag = 20 mm

TP1 22.1 2.04 450 45 0.208 0 0.26 0.92 1.02 1.21

TP1A 25.6 2.04 450 45 0.179 0 0.22 0.89 0.90 1.14

KP1 25.2 2.04 430 89 0.174 0 0.22 0.89 0.90 1.12

TP2 23.1 2.04 450 45 0.199 3.00 0.114 1.01 1.02 0.72

KP2 24.3 2.04 430 89 0.180 3.00 0.106 1.03 1.06 0.68

TP3 20.8 2.04 450 45 0 3.00 0.061 1.27 1.34 2.75

KP3 21.0 2.04 430 89 0 3.00 0.054 1.15 1.22 2.47

TP4 23.2 2.04 450 45 0.396 0 0.35 1.09 1.39 1.68

TP4A 24.9 2.04 450 45 0.369 0 0.35 1.14 1.41 1.77

KP4 23.0 2.04 430 89 0.381 0 0.30 0.94 1.20 1.44

TP5 20.9 2.04 450 45 0 0 0.093 1.49 1.42 1.28

KP5 20.9 2.04 430 89 0 0 0.063 1.01 0.98 0.87

Kirschner and Khalifa20,21; ag = 10 mm

SE1 42.5 2.92 492 72 0.110 0 0.159 0.90 0.94 1.04

SE5 25.9 4.50 492 72 0.855 0 0.31 0.89 1.26 1.60

SE6 40.0 2.92 492 72 0.040 0 0.094 0.95 0.99 1.02

Porasz and Beidermann33,34; ag = 10 mm

SE11 70.8 2.93 478 34 0.063 0 0.093 0.83 0.90 0.91

SE 12 75.9 2.94 450 72 0.060 0 0.098 0.96 1.01 0.99

SE 13 80.5 6.39 509 54 0.115 0 0.149 0.82 0.86 1.34

SE14 60.4 4.48 509 72 0.378 0 0.30 1.03 1.19 2.32

Marti and Mayboom35; ag = 13 mm (constant axial load fx/v at failure)

PP1 27 1.95 480 108 0.116 0 0.183 0.98 1.02 1.02

PP2 28.1 1.59 563 108 0.111 –0.38 0.196 1.06 1.08 0.95

PP3 27.7 1.24 684 108 0.113 –0.80 0.199 1.03 1.02 0.86

Vecchio et al.36,37; ag = 10 mm

PA1 49.9 1.65 606 45 0.086 0 0.126 0.94 1.03 0.95

PA2 43 1.66 606 45 0.100 0 0.145 0.94 1.02 0.96

PHS1 72.2 3.25 606 44 0 0 0.037 1.07 1.08 0.97

PHS2 66.1 3.25 606 44 0.033 0 0.093 1.13 1.25 1.27

PHS3 58.4 3.25 606 44 0.074 0 0.140 0.99 1.13 1.20

PHS8 55.9 3.25 606 44 0.115 0 0.193 1.02 1.15 1.45

PC1 25.1 1.65 500 50 0.163 0 0.197 0.84 0.87 0.99

Pang and Hsu22; ag = 19 mm

A2 41.3 1.19 463 189 0.134 0 0.136 1.01 1.01 0.87

A3 41.6 1.79 447 189 0.192 0 0.190 0.98 0.99 1.23

A4 42.5 2.98 470 189 0.330 0 0.28 0.97 1.11 1.82

B1 45.2 1.19 463 189 0.056 0 0.092 1.01 1.08 0.87

B2 44.1 1.79 447 189 0.126 0 0.146 0.96 0.96 0.97

B3 44.9 1.79 447 189 0.057 0 0.102 0.94 1.05 0.96

B4 44.8 2.99 470 189 0.057 0 0.119 0.92 1.10 1.12

B5 42.8 2.98 470 189 0.129 0 0.177 0.89 0.96 1.16

B6 42.8 2.98 470 189 0.194 0 0.23 0.95 0.96 1.53

Zhang and Hsu38; ag = 13 mm

VA1 95.1 1.19 445 94 0.056 0 0.068 1.04 1.20 0.75

VA2 98.2 2.39 409 94 0.100 0 0.103 1.03 1.03 1.02

VA3 94.6 3.59 455 94 0.173 0 0.163 0.94 0.94 1.59

VA4 103.1 5.24 470 94 0.239 0 0.22 1.00 0.91 2.21

VB1 98.2 2.39 409 94 0.054 0 0.080 1.01 1.07 0.91

VB2 97.6 3.59 455 94 0.054 0 0.097 0.95 1.13 1.10

VB3 102.3 5.98 445 94 0.052 0 0.099 0.90 1.08 1.17

VB4 96.9 1.79 455 189 0.027 0 0.052 0.97 1.12 0.85

Average 1.01 1.11 1.40

COV 12.2 13.0 46.7
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very accurate provided that the concrete does not crush prior
to yielding of the reinforcement. Such crushing failures are
possible for shear stresses above approximately 0.25fc′ ,
though failure stresses as high as 0.35fc′  have been observed.
Elements that have more longitudinal reinforcement than
transverse reinforcement (that is, ρx > ρz) fail at shear
stresses higher than those predicted by the 45-degree truss
model when loaded in pure shear. It is shown in Fig. 11 that
the observed shear strengths of these elements can be as high
as ρz fy + 0.10fc′. Under combined tension and shear,
however, elements with transverse reinforcement can fail at
shear stresses as low as ρz fy – 0.085fc′ . Given the considerable
spread in the observed shear strengths, it is understandable that
finding a simple but accurate empirical correction factor to
the 45-degree truss model is a difficult task.

The predicted capacities for the elements that result from
using the ACI approach of taking the shear strength as the
diagonal cracking load plus ρz fy are compared to the
experimentally determined failure shear stresses in Table 1.
While this approach is simple to apply, it does not give
results that are acceptably accurate. Because yielding of
the longitudinal reinforcement due to shear is not checked,
the approach can be seriously unconservative for elements
where ρx does not greatly exceed ρz (ratios of experimental to
predicted failure shear being as low as 0.48). The approach
can also be unconservative for elements with transverse
reinforcement subjected to axial tension (ratios as low as
0.68). This is because the axial tension can cause θ to be
greater than 45 degrees, which makes vs less than ρz fy. On
the other hand, the method overestimates the reduction in
shear capacity caused by axial tension for members
without transverse reinforcement (ratios of experimental
to predicted capacities as high as 4.62) and also overestimates
the increase in shear capacity caused by axial compression
(refer to Specimens PP1 to PP3). Overall, the average
value of the experimental to predicted shear stress ratio by
the ACI approach is 1.40 and the coefficient of variation (COV)
is 46.7%.

Solving the full set of equations of the MCFT to find the
predicted shear strength of an element is a complex task that
requires a computer program such as Membrane-2000. The
ratios of the experimental failure shears to the failure shears
predicted by this program are given in Table 1. It can be seen
that, while complex, this procedure is very accurate with the
average value of the ratio being 1.01 and the COV being only
12.2%. While a little more complex than the ACI calculations,
the simplified MCFT calculations can be performed on the
“back of an envelope” and yield results that are nearly as
accurate as the full version of the MCFT. Thus, the average
ratio of experimental-to-predicted failure shear for this
method is 1.11 and the COV is 13.0%.

CONCLUSIONS
Understanding the behavior of reinforced concrete

subjected to shear is challenging, partly due to the difficulty
of performing pure shear tests. Over 100 such tests have been
performed during the last 25 years, however, and the results
from these tests are summarized in this paper and compared
with three different shear theories, including the ACI code.

This paper summarizes the relationships of the MCFT.
This theory can model the full load-deformation response of
reinforced concrete panels subjected to arbitrary biaxial and
shear loading. Solving the equations, however, requires
special-purpose computer programs and the method is, thus,

not practical for “back of the envelope” calculations. While
complex, the theory is accurate and the average ratio of
experimental-to-predicted shear strength of the 102 panels
is 1.01 with a COV of only 12.2%.

On many occasions, a full load-deformation analysis is not
needed; rather, a quick calculation of shear strength is
required. This paper presents a simplified version of the
MCFT. At the heart of the method is a simple equation for β
and a simple equation for θ. While simple, the method provides
excellent predictions of shear strength. The average ratio of
experimental-to-predicted shear strength of the simplified
MCFT is 1.11 with a COV of 13.0%.

It is hoped that the new simplified method explained in
this paper can help others improve their understanding of
shear behavior as easily as it has for the authors. In addition,
it is hoped that it can help in the development of new codes
of practice that could one day become as internationally well
accepted for shear design as the plane sections method
currently is for flexural design.
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