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Modeling of Unbonded Post-Tensioned Concrete Beams

Critical in Shear

by Frank J. Vecchio, Paul Gauvreau, and Karen Liu

A stress-slip constitutive model is formulated for use with two-
node bond-link elements to represent friction effects occurring in
unbonded tendons of post-tensioned concrete beams. The friction
effects considered are those arising from profile curvature and tendon
wobble; thus, changes in tendon force during stressing, setting, and
subsequent member loading are inherently modeled. The formulation
is incorporated into a nonlinear finite element algorithm, where it
is found to simulate friction effects well under all stages of stressing
and loading. A series of shear-critical beams is modeled and
analyzed; the load capacity, cracking patterns, and deformation
response of all beams and the accompanying variations in tendon
Jorces, are accurately simulated. It is shown that neglecting friction
effects in unbonded post-tensioned beams has a minor influence on
the computed response, whereas neglecting increases in tendon
forces during loading has a major influence. Analyses based on
code specifications tend to be overly conservative with respect to
shear capacity and are marked by wide scatter.
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INTRODUCTION

Post-tensioned structural systems for short- and medium-
span concrete bridges generally make inefficient use of the
compressive strength of concrete. This occurs because the
dimensions of the primary cross section are generally
selected on the basis of code thickness requirements,
detailing requirements, anchorage hardware, or rules-of-
thumb, none of which directly consider the requirements of
strength and serviceability in longitudinal flexure. The result
is typically a structure in which the compressive stresses
under service conditions are significantly less than allowable,
and where the compression stress block at ultimate is signif-
icantly thinner than the flange or slab, even for relatively
low-strength concrete. This practice is not only inefficient, it
also provides little incentive to the use of high-strength concrete.

A challenge currently facing designers is to advance
building and bridge technology through the development of
new structural systems that take advantage of recent
advances in materials technology. Various high-performance
systems are being examined and developed worldwide. One
option is through the use of external, unbonded prestressing;
with the relatively large diameter post-tensioning ducts
removed from within web elements, for example, thinner
and more efficient sections can be developed. The behavior
of such sections in shear, however, has not been extensively
investigated and is not well understood.

Another concern lies in the rationality of some code
provisions. For example, vertical web reinforcement in
structures prestressed with unbonded tendons is currently
dimensioned on the basis of code requirements developed
for girders with bonded longitudinal reinforcement. The
contribution of stirrups to the member’s shear resistance is
thus predicated on a load path in which the stirrups equilibrate
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the vertical component of a diagonal compressive force in
the concrete (that is, internal truss action is established). For
this transfer of force to take place, however, the horizontal
component of the diagonal compression must be equilibrated
by a change in the force in the longitudinal tensile reinforcement.
By definition, however, the force in unbonded tendons is
essentially constant between the anchors. Hence, the stirrups
cannot contribute to shear resistance, according to the classical
truss model, in girders containing no conventional longitudinal
reinforcement. Arching of the effective prestress force has
been identified as a valid mechanism for resisting shear in
girders prestressed with unbonded tendons.! If one adopts
this viewpoint, then stirrups cannot contribute directly to
shear resistance via usual mechanisms, which is thus
contrary to the design philosophy currently embodied in
design codes.

Whether developing new high-performance designs, or
invoking a rational approach to current design situations, a
need exists for reliable and accurate tools in assessing the
strength and behavior of shear-critical prestressed members
with unbonded tendons. Application of nonlinear finite
element procedures is one possible approach. Not only must
the finite element program accurately model the shear
behavior of cracked concrete, it must properly represent the
nature of the forces developed in unbonded tendons,
including the effects of friction during the stressing,
anchoring, and loading stages. .

RESEARCH SIGNIFICANCE
Current conceptual models for representing the shear
resistance in members with unbonded tendons, as embodied
in our design codes, are suspect. The reason is that unbonded
longitudinal reinforcement cannot engage the stirrups in an
internal-truss mechanism in the usual manner if the members
contain no conventional longitudinal reinforcing bar. As new

design approaches evolve, and as higher stress demands are

placed on shear-resisting elements, tools are needed for
accurately accessing the strength and behavior of shear-
critical members prestressed with unbonded tendons. This
paper presents a finite-element-based approach for modeling
shear resistance in such members, with consideration given to
friction effects.

FINITE ELEMENT FORMULATION
The force in a post-tensioning tendon generally diminishes
inward from the jacking end due to friction losses arising
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from tendon wobble and tendon curvature. The basis for the
friction model adopted in the finite element formu!atlon
herein is the relationship described by Leonhardt. 2 Here, the
tendon force variation along a span segment, between Points
A and B in Fig. 1, is given by

TB = TAe—(].lu + KLH] (N

where T} is the tendon force at Location A; T} is the tendon
force at Location B; Ly is the horizontal projection of the
distance between A and B; « is the total angle change in the
inclination of the tendon between Points A and B (in radians);
K is the wobble coefficient; and p is the curvature coefficient.
Appropriate values for wobble coefficient and curvature coef-
ficient are generally available from codes or from tendon
suppliers. Note that in the typical post-tensioning operation,
the tendon may be initially stressed beyond the desired final
value and then relaxed. Also, there may be additional force
lost due to setting of wedges during transfer of force from jack
to anchor. Both actions will result in a reverse gradient of fric-
tion losses being established, with the tendon force generally
peaking at some distance inward from the anchor point. The
nature of the friction losses, however, can still be fully
described by proper application of Eq. (1).

In a finite element context, the post-tensioning bars or
tendons can be represented by truss bar elements. Bond-link
elements can be used to connect the bar elements to solid
elements representing the concrete beam (refer to Fig. 2). An
appropriate bond stress-slip model can then be defined to
describe the differential movement of the bar (tendon)
elements relative to the surrounding concrete elements.

The bond-link element is a two-node nondimensional
element, with the two nodes initially coincident; one node is
connected to the solid elements representing the reinforced
concrete beam and one node is connected to the truss
elements representing the prestressing tendon. The link
element can be oriented at any arbitrary angle 0 to the
horizontal, suitable in the case of inclined tendons. A general
conceptual representation of a link elemcnl is shown in
Fig. 3, consisting of two orthogonal springs. 4 One spring
deforms tangentially to the truss elements, thus representing
bond slip and bond stresses. The other spring deforms in a
radial direction relative to the truss element, representing
normal displacements. In representing post-tensioning
tendons, the properties of the tangential spring are defined
such that they describe frictional stresses rather than bond
stresses. The normal spring, on the other hand, is assumed
infinitely stiff (that is, no normal displacements permitted).
The element stiffness matrix for the link element, with
respect to tangential and normal displacements at each node
(thatis, {A;, Ay Ay Ay}, is given as
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Fig. I—Friction Ir)sse:; in unbonded tendon due to tendon
wobble and curvature.
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Fig. 2—Representation of unbonded tendons in fininte
element context.
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Fig. 3—Representation of bond-link element.*
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Standard transformations are used to redefine the stiffness
matrix relative to the global coordinate system. Note that
K,— 0.

To account for friction losses due to wobble and curvature
of the tendon, the bond stress model adopted is as shown in
Fig. 4; that is, a constant stress Ty (either positive or negative)
is assumed to act at any given slip displacement A. Hence,
the frictional stresses thus described are independent of the
magnitude of differential movement, but rather depend only
on the direction of movement.

Based on a modification of Eq. (1), the magnitude of the
frictional stress T for the link at Node i is by
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where f, is the tendon stress at Node i1 A is the cross-
sectional area of the tendon: L is the length of tendon tributary
to Node i; and P, is the perimeter of the tendon cross section
(which, for convenience, can be taken as 1.0). Note that the
angle o in Eq. (3) is the angle subtended by the two in-
framing truss bar elements at Node i (that is, zero if the truss
bars are colinear; positive value if Node i is a harp point or if
the tendon is draped). The angle 0, used to define the
orientation of the link element, is set equal to an inclination
half-way between the two in-framing truss elements,

A secant frictional stiffness factor, corresponding to a total
slip of Ay, is effectively defined as

k| =T|fﬂl {4)

The tangential stiffness coefficient in the element stiffness
matrix is thus defined as

K;Ikl'L'Pb {5)

This formulation is suitable for direct implementation into
a nonlinear algorithm based on a secant stiffness approach
(as used in this study). Alternative formulations can readily
be developed for tangent stiffness-based algorithms. It
should also be noted that once the incremental slip reverses
direction (for example, as a result of draw-back during set).
the frictional shear stress reversed direction as well.
Consequently, the friction may be acting in the direction
opposite to the that of the net slip (for example, point
corresponding to A, in Fig. 4). In this case, the coefficients
k; and K, will have negative values.
_ To facilitate finite element modeling of the jacking and
setting operations, and the resulting tendon forces and
associated friction losses, a consistent loading scheme is
required. The approach used here is to define an anchorage
block within the finite element mesh (refer to Fig. 2) to
which the tendon end is attached. The elements forming the
anchorage block are given a convenient coefficient of
thermal expansion for unidirectional expansion in the axial
direction of the member. Temperature strains can then be
imposed on the anchorage elements to simulate draw-out of
the tendon during jacking, and draw-back during setting. For
example, if the anchorage block is made 100 mm thick and
given a coefficient of thermal expansion in the x-direction of
0.010/°C, then imposing a differential temperature that
increases from 0 to 30 °C and then drops back to 24 °C will
produce a tendon draw-out of 30 mm followed by a 6 mm
draw-back due to setting. Tendon stresses and friction losses
will then be automatically computed within the finite element
analysis according to the stress formulations presented.

The formulations described above were implemented into
a nonlinear finite element program for analysis of two-
dimensional reinforced-concrete solid structures. The material
behavior models implemented in the program are based on
the Disturbed Stress Field Model,? which is an extension of
the Modified Compression Field Theory.® In it, cracked
reinforced concrete is treated as an orthotropic material
based on the concept of smeared rotating cracks.
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Fig. 4—Bond stress model used to represent frictional shear
stresses acting on unbonded tendons.
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Fig. 5—Details of Gauvreau test gir{.’c’rs.’

ANALYSIS OF FLEXURE-DOMINATED
BEAM SPECIMENS

In addition to the frictional stresses incurred in unbonded
tendons during the post-tensioning and setting phases, local
frictional effects can also develop during later loading phases.
In particular, as a member is loaded and develops flexural
cracks. and consequently as the tendon elongates, stresses in
the tendon will increase on average but will be slightly
greater in the vicinity of large flexural cracks. Friction
prevents the increase in tendon strain from being uniformly
distributed along its length. Hence, with respect to variation
in tendon stresses along an unbonded tendon, the effects of
friction will be more pronounced in flexure-dominant
members. For this reason, a series of specimens heavily
influenced by flexural action would be examined first in
testing the proposed model’s ability to represent tendon
friction effects accurately.

The series of four girders tested by Gauvreau' was
selected for this study: Beams S1, §2, S3, and S4. Each of the
[-girders had an overall depth of 700 mm and spanned 10 m,
with a flange thickness of 350 mm and a web thickness of
140 mm (refer to Fig. 5). Each girder in this series was post-
tensioned using a single unbonded tendon with a parabolic
profile. The BBRV stressing system consisted of 7-mm
diameter wires, housed in a smooth 40-mm diameter smooth
duct, and was stressed from one end only. In addition, each
girder contained various amounts of conventional longitu-
dinal reinforcement and shear reinforcement. Specimen details
and material properties are given by Gauvreau.'

Each girder was tested by static loading at midspan in a
displacement-controlled mode. In all four girders. large
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Fig. 6—Comparison of calculated and measured load-
deflection responses for Gauvreau test girders.

(b) Failure mode—finite element analysis result

Fig. 7—Crack patterns and failure mode for Gauvreau
Specimen 54.

flexural cracks developed in the central portion of the girders
to approximately 3 m on either side of the midspan, with
crack widths of up to 3.5 mm in width. Crushing and spalling of
concrete was observed in the compression zone at the ultimate
load stage. Beams S1, S2, and S3 experienced a compression-
flexure failure mode; Specimen S4 failed by sudden rupture of
stirrups at various locations within 1.0 m of the midspan.

A finite element (FE) model was developed to represent
the test specimens; due to symmetry, only 1/2 of each beam
was modeled. A typical mesh of 110 x 27 eight-degree-of-
freedom rectangular elements was used to represent the
girders; all the longitudinal reinforcement and prestressed
reinforcement was represented by truss elements, while the
shear reinforcement was modeled as smeared. The truss
elements representing the prestressing steel were connected
to the concrete elements by link elements. To model the
frictional effects, a curvature coefficient of 0.05 and a
wobble coefficient of between 0.000610/m and 0.000653/m
were used. The FE analysis was conducted in two stages.
First, the tendon was progressively stretched until the tendon
stress matched that in each test girder, as measured by load
cells installed at the anchor points. At that point, the tendon
draw-out was fixed constant. Then, a monotonically-
increasing downward displacement was imposed at the
midspan of the girder, with a typical step size of 5 mm.

The finite element analyses were able to provide highly
accurate calculations of the response of these test specimens.
Shown in Fig. 6 are comparisons between the calculated and
observed load-deflection response of the girders. The pre- and
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Fig. 8—Comparison of calculated and measured tendon

forces for Gauvreau test girders.

post-cracking stiffness, ultimate load capacities, and
displacements at peak load are captured. The crack patterns,
crack widths, and failure modes were also well predicted
(refer to Fig. 7). Perhaps most significant, however, is the
close correlation obtained for the tendon force as it increased
with deflection of the girders (refer to Fig. 8). Because this
tendon force was influenced by frictional effects, both in the
test and in the analyses, this close correlation provides
confidence in the friction modeling implemented into the FE
formulation. Table 1 summarizes the strong correlations
obtained in the calculations of ultimate load, force in the tendon
at ultimate load, and midspan deflection at ultimate load.

ANALYSIS OF SHEAR-DOMINANT
BEAM SPECIMENS

To corroborate the proposed formulation’s ability to
model post-tensioned unbonded structures critical in shear,
two sets of beam specimens tested by Kordina et al.” and
Kordina and Hegger® were examined. The first set,
comprising Beams B1, B2, and B3, were simply supported
beams with a span of 4.0 m. Beams B1 and B2 had an I-shaped
cross section, whereas Beam B3 was T-shaped. Beams B1 and
B2 contained three straight unbonded post-tensioning
bars (26 mm diameter Dywidag) within the bottom flange,
whereas Beam B3 had three layers of harped tendons (six 0.6 in.
VSL monostrand) within the web. All three specimens
additionally contained various amounts of conventional
longitudinal reinforcement and shear reinforcement. Details of
the specimens are given in Fig. 9(a). The beams were subjected
to monotonically increasing load applied at the midspan.

The second set of specimens tested by Kordina and
Hegger® included Beams B4, B5, B6, B7, and BS. All beams
in this series were [-shaped in cross section, 740 mm in total
depth, and simply supported spanning 6.0 m. Beams B4,
BS, and B6 each contained one straight prestressing bar in
the top flange (26-mm diameter Dywidag) and three straight
prestressing bars in the bottom flange (three 26 mm-diameter
Dywidag for B4 and BS, three 32-mm diameter Dywidag for
B6). Beams B7 and B8 contained one straight prestressing
bar in the top flange (26-mm diameter Dywidag) and 10
harped tendons in the bottom flange and web (ten 0.6 in.
VSL monostrand). Again, all specimens contained various
amounts of conventional longitudinal reinforcement and
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Table 1—Results of Gauvreau! test girders—friction considered

Tpi,testv Tpi,FEA’ TPi-FEA/ Tpu.test’ Tpu,FEA’ TP“,F 54/ P u,tests P u,FEA> P"’FEA/ Au,testv Au,FEA’ AquEA/
Girder| kN kN Tpi,test kN kN pu,test kN Vu,test mm mm Au,test
S1 592 597 1.01 791 817 1.03 | 422 441 1.04 | 149.7 | 1509 1.01
S2 592 591 1.00 787 805 1.02 | 413 428 1.04 | 123.0| 1359 1.10
S3 592 589 0.99 799 838 1.05 | 423 443 1.05 | 150.5 | 160.9 1.07
S4 592 593 1.00 782 784 1.00 | 398 416 1.05 | 120.1 | 125.6 1.05
Mean 1.00 Mean 1.03 Mean 1.04 Mean 1.06
doviation| 001 devaton| 992 | |deviation| 001 deviaton | 0
COV,% | 0.61 COV,% | 191 CoV, % | 0.50 COV, % | 3.85
Note: COV = coefficient of variation.
shear reinforcement. Additional specimen details are given in A Py
Fig. 9(b). These beams differed from the first set in that three - -
separate loading cases were applied to each. The first loading ( :] B %:: B
copdition saw two concentrated loads applied at the third- T — 125:,‘: e [ STy
points of the simply supported full-span beam. The second =
loading stage had a concentrated load applied at one of the
third-points of the full-span beam, whereas the third condition - ™ <
invqlved a copcentrated load applied at the midspan of - §(§
partially cantilevered beams. The shear reinforcement bl iy 4
details and loading conditions were such that each loading [T a0 wl] fm)lw ey

conditions produced an independent failure zone. In
total, 15 tests were conducted.

It was reported by Kordina et al.” that all beams in this
series were governed by shear-critical behavior. Beam B2
failed by sudden web crushing, and Beam B3 experienced
web crushing failure in the tension chord region near a
support. All others failed in tension shear or flexural shear.

In developing finite element models for this series of
beam, the entire lengths of the beams had to be modeled
owing to the unsymmetrical reinforcement and loading
details. All longitudinal reinforcement and prestressing
reinforcement were modeled with truss bar elements, and all
shear reinforcement was modeled as smeared. Again,
unbonded tendons were simulated using linkage elements to
connect between the tendons and the concrete elements at
various locations along the span. A curvature coefficient of
0.15 and a wobble coefficient of 0.0005/m were used in
modeling the friction effects in the Dywidag bars. A curvature
coefficient of 0.20 and a wobble coefficient of 0.0035/m
were used in modeling friction effects in the harped tendons.

The finite element meshes developed typically contained
a grid of 88 x 18 rectangular elements for the 4.0 m beams,
and 130 x 17 rectangular elements for the 6.0 m beams. The
analyses were conducted in two stages. First, the stress in the
tendons was progressively increased until it matched the
initial tendon stress in each test girder, and then the tendon
was allowed to draw-back 6 mm before fixing. Then, a
monotonically increasing downward displacement was
imposed in a manner corresponding to the test condition,
with a typical step size of 0.25 mm (for 4.0 m beams) or 0.5 mm
(for 6.0 m beams). It should be noted that in the second and
third test conditions of Beams B4 through B8, the analyses
began with the specimens assumed undamaged whereas in
the actual tests, the beams had experienced some cracking
due to previous loading.

The ultimate load capacities and tendon forces calculated
from the finite element analyses are compared to the experi-
mental results in Table 2 for all 15 tests performed. The ratio
of calculated-to-measured strengths of the beams had a mean
value of 1.01 and a coefficient of variation of 6.5%, indicating
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Fig. 9—Details of beams tested by Kordina et al. 7.8

that the shear-critical mechanisms governing these specimens
were well simulated. The calculated tendon forces at ultimate
were also were reasonably accurate. For all 15 tests, the correct
modes of failure were calculated, ranging from web-shear to
flexural-shear. The predicted crack patterns were also in good
agreement with test observations (refer to Fig. 10) bearing in
mind that some segments of the test beams were precracked
due to previous loading under different conditions.

INFLUENCE OF FRICTION

The analyses described above considered friction effects
on the initial tendon force profiles within the beams and on
the local changes in tendons forces arising from member
loading. If frictional effects were ignored, the tendon forces
would be uniform along the lengths of the beams at all times.
To assess the extent to which friction influences shear
response, both series of beams were reanalyzed assuming no
frictional stresses developed (for example with t; in Eq. (3)
set to zero for all levels of slip).

In the flexure-dominated girders tested by Gauvreau,
ignoring friction effects resulted in a slight deterioration in
the accuracy of the computed response. The ultimate load
capacity and the force in the tendon at ultimate limit state
were slightly higher estimated relative to the results of the

1
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Table 2—Results of Kordina et al. test beams—friction considered

. Failure | Failure
Tiestr| Tpipeas | TpiFEA! | Tputestr| Toupar | Tk EA?| Vigsesr | Vierias | VFEA | Ay pgas| mode— | mode—
Beam | kN kN pitest | KN kN Tpusest | kN kN Victest | mm test FEA
Bl 380 389 1.02 596 484 0.81 225 220 098 | 4.05 | T-S/F-8 | T-S/F-S
B2 700 717 1.02 1112 1120 1.01 400 424 1.06 10,9 w-C W-C
B3 784 728 0.93 994 1026 1.03 338 310 0.92 10.1 W-C Ww-C
B4-1 948 921 0.97 1319 1316 1.00 375 366 0.98 14.2 | T-S/F-8 | T-S/F-8
B4-2 | 1159 1167 1.01 1435 1598 1.11 483 471 0.97 22,0 | T-S/F-S | T-S/F-§
B4-3 | 1070 1073 1.00 | 1347 1358 1.01 425 420 099 | 12.0 | T-S/F-S | T-S/F-S
B5-1 | 1389 1405 1.01 1743 1913 1.10 550 573 1.04 | 18.2 | T-S/F-S | T-S/F-S
B5-2 | 1330 1325 1.00 1771 2045 1.15 650 668 1.03 | 247 | T-S/F-S | T-S/F-S
Bo-1 1349 1346 1.00 1730 2197 1.27 550 651 1.18 279 | T-S/F-§8 | T-S/F-§
B6-2 | 1460 1463 1.00 1788 2179 1.22 650 660 1.02 25.5 | T-S/F-S | T-S/F-S
B6-3 | 1276 1266 0.99 1400 1503 1.07 475 464 0.98 8.4 | T-S/F-S | T-S8/F-S
B7-1 | 1030 1029 1.00 1352 1588 1.17 437 442 1.01 29.0 | T-S/F-8 | T-S/F-S
B7-3 941 930 0.99 1003 1079 1.08 325 315 0.97 8.3 | T-S/F-5 | T-S/F-8
B8-1 1395 1400 1.00 1790 2223 1.24 575 640 111 49.5 | T-S/F-S | T-S/F-S
B8-3 | 1310 1299 0.99 1372 1512 1.10 437 433 0.99 11.0 | T-S/F-S | T-S/F-S
Mean 1.00 Mean 1.09 Mean 1.01
st ogn | (St 01 | el
COV. % | 2.29 COV, % | 10.59 COV, % | 6.47

Note: T-S/F-S = tension shear/flexural shear, and W-C = web crushing.

IT

SN

==~ 1§

t Lombing prition |

Bb-1

(b} Failure mode—finite element
analysis results—friction considered

7.8
(a) Failure mode—test results

Fig. 10—Comparison of crack patterns and failure modes
for typical Kordina et al.”® test beams.

previous analysis (by only about 2% on average). The
ductility of the beams, as measured by the midspan deflection
at ultimate load. was considerably over-estimated; much
more so than when friction is considered.

A similar pattern was observed when the shear-critical
beams tested by Kordina et al.”® were reanalyzed with friction
effects ignored. The load capacity and tendon forces were
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slightly more over-estimated, relative to the experimental
values, than when friction effects were considered. The degree
of influence is minor, however, at approximately 2 to 3%
relative to the more rigorous analyses. Hence, if the means to
include frictional effects in the finite element analyses is not
available, the deterioration in accuracy is not severe.

INFLUENCE OF INCREASING TENDON FORCES

In the analysis of post-tensioned members with unbonded
tendons, it is common to represent the post-tensioning with
externally applied end forces at the anchor locations and
deviation forces at harp points or along a curvilinear
segment. The presence of the tendon is then omitted in any
subsequent sectional analysis. The post-tensioning forces are
usually held constant, and hence do not account for the
increase in tendon forces that will arise as the tendon in a
loaded member undergoes further straining.

The Kordina et al.”® beams were reanalyzed with the
elements representing post-tensioning bars and tendons
removed, and with external anchor and deviation point
forces of constant magnitude applied. The applied forces
were proportioned according to the initial post-tensioning
forces. The analysis results showed that the calculated ultimate
load capacity of the beams is significantly reduced by about
24% on average. Whereas previously the mean of the ratio of
the calculated-to-measured strength for these beams was
1.01, it was reduced to 0.77 and accompanied by a doubling
of the coefficient of variation (that is, much more scatter).
Moreover, whereas the previous analyses correctly predicted
a shear failure for all beams, several of the beams are now
found to sustain a flexure-controlled failure mode. The
indication is that increasing tendon forces cause a more rapid
elevation in flexural capacity than they do in shear capacity.
Hence, ignoring increasing tendon forces may result in a
false, and potentially dangerous, conclusion that a member is
flexure-critical and not likely to sustain a shear failure.

ACI Structural Journal/January-February 2006



Table 3—Code-calculated strength for Kordina et al. beams

Specimen | Viesss KN [Vizas KN| Vit /Vrga| Vesa KN | Viea/Vesa | Vaasaro, XN |Vies! Vaasuro| Vacizis-02 KN | View/ Vact | Veest/Vact' | Viest!Vees'
Bl 225 220 1.02 164 1.38 156 1.44 184 1.22 1.27 1.40
B2 400 424 0.94 398 1.01 8 8 354 1.13 1.23 0.89
B3 338 310 1.09 302 1.12 _$ _8 364 ©0.93 0.83 0.71

B4-1 375 366 1.02 213 1.76 213 1.76 277 1.35 1.26 1.29
B4-2 483 471 1.03 311 1.56 320 1.51 396 1.22 1.28 1.19
B4-3 425 420 1.01 360 1.18 335 1.27 349 1.22 1.14 1.24
BS-1 550 573 0.96 369 1.49 375 1.47 440 1.25 1.20 1.41
B5-2 650 668 0.97 489 1.33 493 1.32 581 1.12 1.07 1.29
B6-1 550 651 0.84 434 1.27 432 1.27 515 1.07 1.08 1.26
B6-2 650 660 0.98 560 1.16 _8 _8 538 1.21 1.20 1.19
B6-3 475 464 1.02 382 1.24 360 1.32 373 1.27 1.21 1.47
B7-1 437 442 0.99 278 1.57 261 1.67 332 1.32 1.09 1.28
B7-3 325 315 1.03 230 141 192 1.69 262 1.24 1.19 1.39
BS-1 575 640 0.90 383 1.50 375 1.53 459 1.25 1.22 1.17
BS8-3 437 433 1.01 316 1.38 294 1.49 342 1.28 1.12 1.39
Mean 0.99 1.36 1.48 1.21 1.16 1.24

Standard| g o 0.20 0.17 0.1 0.11 0.20

COV, % 6.08 14.77 11.25 8.83 9.83 16.34

*Measured-to-calculated strength using ACI 318-02.13

*Measured-to-calculated strength using ACI 318-83.7

Measured-to-calculated strength using CEB code.”

$High shear ratio (Af,/b,,s); exceeds AASHTO code limit of 0.25.112

STRENGTHS ACCORDING TO CONCLUSIONS

CODE PROCEDURES

The shear strength calculation procedures for unbonded
prestressed beams from three North American codes were
examined: the Canadian code,lo the AASHTO Code,“’12
and the ACI Code (ACI 318-2002).!! Each is cast in a form
in which shear strength is derived from a steel contribution
and a concrete contribution, although the manner in which
these are calculated, and the limits imposed, vary somewhat.
In all cases, material resistance factors or capacity reduction
factors were set to 1.0 to produce a best-estimate of the
strength of the test beams.

The ultimate shear capacities of the shear-critical beams
tested by Kordina et al. 8 were calculated according to the
code procedures. The shear strengths of each beam, as calcu-
lated by all three methods, are listed in Table 3, wherein they
are compared to the experimental results and the results
obtained from the finite element analyses. In the calculations
using the AASHTO procedure, Beams B2, B3, and B6-2
exceeded the limit on the shear reinforcement ratio and hence
their strengths could not be calculated.

In general, the code calculated values significantly under-
estimated the shear strengths. The ratio of measured-to-
calculated strength has a mean value of 1.36 for the CSA
method, 1.48 for the AASHTO method, and 1.21 for the ACI
method. Moreover, the coefficients of variations for the
mean strength were high for the three methods; 15, 11, and
9%, respectively. Hence, all three code procedures were
somewhat unreliable, although conservative. In contrast, the
strengths computed by finite element analyses had a mean
ratio of 0.99 and a coefficient of variation of 6%, and thus
considerably more accurate.
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Based on the results of this limited study, the following
conclusions are derived:

1. Friction losses in unbonded prestressing tendons can be
effectively modeled in a finite element analysis context
through use of bond-link elements and an appropriately
modified bond-slip model;

2. Frictional effects that can be modelled include those
arising from initial jacking, from anchor set, and from
subsequent member loading;

3. Nonlinear finite element analyses that properly consider
variations in tendon force can be used to accurately assess
the strength, load-deformation response, ductility, cracking
pattern, and failure mode of shear-critical unbonded post-
tensioned members. To do so, however, the analyses must
also include a reliable constitutive model for reinforced
concrete behaviour in shear; for example, the Modified
Compression Field Theory;

4. Ignoring friction effects (that is, assuming a uniform
tendon force throughout the length of the member) results in
only a minor deterioration in the accuracy of the analyses;

5. Ignoring tendon force increases due to additional
straining under member loading (that is, treating the post-
tensioning as constant, externally-applied forces) results in a
significant under-estimation of load capacity in shear-critical
beams. In some cases, the failure mode is also incorrectly
determined; and

6. North American codes typically provide overly-
conservative estimates of the strengths of shear-critical
unbonded prestressed members, and with a wide scatter in
comparison to observed strengths.
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NOTATION

fsp = tendon stress at Node i
K = wobble coefficient per foot or per meter of tendon
K, = stiffness of normal spring

K, = stiffness of tangential spring

k; = secant frictional stiffness factor

L = length of tendon tributary to Node i

Ly = horizontal projection of the distance between A and B
P, = the perimeter of the tendon cross section

P, = applied load at ultimate loading stage

element stiffness matrix for the link element
T, = tendon force at Location A
Tp = tendon force at Location B

|23
3
f

T,; = initial prestressing force in tendon

T,, = prestressing force in tendon at ultimate loading stage
Vu

o

shear force at ultimate loading stage
= total angle change in inclination of tendon between Points A and B,
in radians
oy = slip corresponding to bond stress 1y
A, = slip corresponding to bond stress T,
A,; = normal displacement at Node i
A,; = normal displacement at Node j

A,; = tangential displacement at Node i
A, = tangential displacement at Node j
A, = deflection of midspan at ultimate loading stage

p = friction coefficient
6 = orientation of link element
t; = bond stress
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