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Compression field modeling of confined concrete

E. Montoyat, F.J. Vecchiot and S.A. Sheikhi

Department of Civil Engineering, University of Toronto, Toronto, Canada

Abstract. The three-dimensional behavior of confined concrete was investigated, including strength
enhancement due to triaxial compressive stresses, lateral expansion, compression softening, cover spalling
and post-peak ductility. A finite element program based on a nonlinear elasticity methodology was
employed to evaluate the ability to model triaxial behavior of reinforced concrete (RC) by combining
constitutive models proposed by several researchers. The capability of compression field based models to
reproduce the softening behavior of lightly cracked confined concrete was also investigated. Data from
tested specimens were used to evaluate the validity of the formulations. Good agreement with the
experimental results was obtained.

Key words: nonlinear; finite element; analysis; reinforced concrete: confinement; lateral expansion;
columns.

1. Introduction

A wide variety of constitutive material models that take into account the influence of triaxial
states of strain and stress have been developed for RC. Modeling of RC columns ranges from
empirical models based on experimental results to nonlinear finite element analysis (NLFEA) based
on fracture mechanics or plasticity (Chen 1982).

Stress-strain formulations for confined concrete have been derived from axially loaded columns
tested under different load rates. Some of the parameters that have been studied are: unconfined
concrete strength; volumetric ratio of lateral steel; longitudinal reinforcement arrangements; tie
setup; lateral steel spacing; and cover dimensions (Sheikh and Uzumeri 1980, Scott et al. 1982,
Mander er al. 1988, Cusson and Paultre 1995, Rasvi and Saatcioglu 1999). The analytical stress-
strain curves typically fit with great accuracy the sets of columns tested by their own authors, but
sometimes they lack general applicability. These models are largely empirical in nature and their
formulation includes parameters not convenient for finite element analysis.

Using an entirely different approach, several researchers have studied triaxial behavior of concrete
using formulations based on fracture mechanics or plasticity. For example, University of Alberta
researchers (Xie er al. 1996) implemented the model of Pramono and Willam (1989) in a finite
element code to reproduce the results of four columns tested. Parameters were adjusted for high
strength concrete (HSC), and a new definition for “crack spacing” as a function of principal stress
accounted for less stiffened HSC Columns with moderate confinement. Although good agreement
was reached, some difficulties arose from the lack of automation in load increments within the
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program.

Karibanis and Kiousis (1994) used a Drucker-Prager model to analyze the behavior of columns
confined with either ties or spirals. The model included a nonassociative flow rule, strain hardening,
and a limited tensile strength for the concrete. Elastoplastic stress increments were computed using
a rather complicated constitutive matrix that was evaluated numerically. In this model, different
confining zones between ties or spirals were defined. The applicability of the model included only
circular columns.

Models derived from fracture mechanics and plasticity generally show good agreement with
experimental results, but difficulties often arise in their numerical implementation. As well, they do
not always capture a wide spectrum of possible three-dimensional behavior of RC. On the other
hand, description of empirical models are based on physical variables often used for practical design
of RC elements, but their formulation is not always suitable for NLFEA.

The analytical methodology presented in this study for the modeling of confined concrete follows
a nonlinear-elastic based approach, which bridges the practicability of empirical material
relationships with theoretically-oriented mechanics-based formulations combining good points of
each.

An initial attempt in this direction to model confined concrete was made by Selby (1990) and
Selby and Vecchio (1993). The plasticity model by Hsieh et al. (see Chen 1982) along with
empirical stress-strain curves for concrete were implemented in a nonlinear elastic-based finite
element program. Cracked concrete was modeled as an orthotropic material with rotating smeared
cracks. The nonlinear elastic analyses were carried out updating the secant stiffness material
matrices for both concrete and steel. Six of the columns tested by Sheikh and Uzumeri (1980) were
modeled with an enhanced version of the program, but difficulties arose when modeling the post-
peak behavior of well-confined columns due to the lack of smooth transitions between triaxial
compressive states and triaxial tensile states, and the aspect ratio of the meshes. Modeling of cover
spalling was not possible.

In this study, the Modified Compression Field Theory (Vecchio and Collins 1986) was employed
to model columns subjected to concentric monotonic axial load. Initially used for modeling of
cracked concrete (panels, beams), the capability of the MCFT to represent the behavior of confined
concrete subjected to triaxial states of stress was explored.

Concrete can be considered confined when subjected to triaxial compression; the triaxial
compression increases the concrete’s capacity to sustain larger compressive strengths and
deformations. When an element of concrete is laterally reinforced (e.g., by ties, hoops or spirals)
and subjected to concentric axial compression, lateral expansion of the element in the plane
perpendicular to the load activates the lateral steel, which confines the element by exerting lateral
pressure. Confined concrete generally fails in a ductile manner, whereas unconfined concrete fails in
a brittle manner. As tensile strains develop in unconfined concrete subjected to compression,
concrete softens and strength decreases. It is also known that Poisson’s ratio does not remain
constant but progressively increases as load increases. This phenomenon is beneficial in activating
the lateral reinforcement.

Program VecTor3 was used to carry out the analyses. It is a nonlinear elastic finite element
program being developed at the University of Toronto based on that of Selby and Vecchio (1993,
1997) for the analysis of reinforced concrete solids. It will be shown that the analytical models
implemented reproduce pre- and post-peak behaviors of RC columns subjected to axial compression
with reasonable accuracy. Activation of lateral steel, lateral expansion of the concrete core, cracking
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and spalling of the concrete cover, yielding of the longitudinal steel, strength enhancement due to
confinement, and load resistance at large deformations are captured well. The capabilities of the
analytical models are also examined by reproducing the shear stress-lateral displacement behavior of
a wall tested under concentric compression and lateral imposed displacements.

2. Material models

The material models used in this study are described below. Stress-strain curves for concrete and
steel, and criteria for confinement, cracking, softening, and variable Poisson’s ratio of concrete
implemented in VecTor3 are presented.

2.1 Stress-strain relationships for concrete in compression

Two base curves were used. The Hognestad parabola (Collins and Mitchell 1997):

fc,-=ﬁ,(2%;" —(i—pﬂ (M

was implemented for the pre-peak regime (i.e., ascending branch) until the peak stress J» and peak
strain &, are reached. In Eq. (1) f; and &; are the compressive stress and strain in the principal i-
direction respectively. For the post-peak regime (i.e., descending branch) the Popovics’ curve (1973)
was used, as follows:
gci
(&)

fci=fp—T, ()
n—-1 +(£—p)
Where n is defined as:
E,
n_Ec - Esec (3)
J,
Ee=g )

E. is the secant stiffness at peak stress, and the initial tangent stiffness is (in MPa):

E.=5000,/f. )

Both relationships are schematically presented in Fig. 1.
2.2 Stress-strain relationship for concrete in tension

Concrete is assumed to follow a linear ascending branch up to the tensile strength f,”. The strain
&, at cracking stress is given as:
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Fig. 1 Stress-strain relationships for concrete in compression
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Cracks are considered smeared within the reinforced concrete, average tensile stresses after reaching

f/’ can be calculated due to tension stiffening. The tension stiffening model proposed by Collins
and Mitchell (1997) was used:

7
fo= Ty o0e, )

Where &; must be a principal tensile strain in the direction under consideration. It is to be noted that
the tension-stiffening model is limited by yielding of reinforcement at crack locations.

2.3 Strength enhancement

Once the base stress-strain curves for concrete in compression have been defined, the confined
stress, f, (i.e., peak stress) and its corresponding strain, &, are computed using the following
criterion proposed by Vecchio (1992).

A stress enhancement factor K, is defined as:

— i‘l‘_ &z_ (_fcl)
Kc_[1.0+0.92 % 0.76( fc’ﬂ”'o_fc’ @®)
where
fcnz_(fc2 _fcl) (9)

Eqgs. (8) and (9) are valid If 0 > fi; > f.2 > fe3, where f.1, fe2 and f,3 are principal stresses.

2.4 Cracking criterion

The Mohr-Coulomb criterion was used to account for the cracking stress f,, under triaxial
conditions. Its formulation is given below:

0.25f/ Sﬁ,:fw{l +]]:—C,3}Sf,' (10)
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Fig. 2 Stress-strain relationship for concrete in tension

fop = £E5050 (an

1 +sin¢

Where ¢ is the internal friction angle of concrete (taken as 37°); ¢ is the cohesion, computed as:

_ ll—SinQ
c=fe 2cos¢ (12)

and f,’ is the standard cylinder strength of concrete.
2.5 Compression softening of concrete

The MCFT recognized the effects of tensile strains in cracked concrete. As concrete cracks, tensile
stresses develop in the concrete between cracks; from zero stress at a crack location to a maximum
half way (see Fig. 2). The effect of tensile strains is to reduce the compressive strength in the
direction parallel to the cracks.

The tentative model proposed by Vecchio (1992) was used in this study, where the compression
softening factor K, is computed as:

K, = 1 <10 (13)

£ 0.8
1-0‘0-35[§ . 0.28J

ci

Where & is the tensile strain in the direction normal to the compressive strain &;. It is assumed in
the MCFT that corresponding principal strains and stresses have the same direction.
The peak compressive stress and the strain at peak stress are calculated as:

fp = K(‘Kd.fcl (14)
€, = K.K;¢, (15)

Where f,” is the standard cylinder strength of concrete, and & 1s the peak strain at f,”, and K, is
the stress enhancement factor defined above.
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2.6 Variable Poisson’s ratio

It has been shown (Montoya 2000) that the Poisson’s ratio v varies with increments in the axial
strain for the case of columns subjected to concentric axial compression. The tentative expression
used in the finite element modeling is:

o

_ 2
Vii= vo{1.0+1.5(2.0%—1.0) } <05 (16)

where Vj; is the Poisson’s ratio in the j-direction due to stress in the i-direction, V, is the initial
Poisson’s ratio. This equation was a slightly modified version of that proposed by Vecchio (1992).

2.7 Stress-strain curve for steel

The monotonic response of steel was modeled with a simple elasto-plastic model with strain
hardening, as shown in Fig. 3. Where g, is the yielding strain, &g, is the strain at hardening, E; is the
initial stiffness, Ey, is the strain hardening modulus, f, is the yielding stress and f, is the rupture
stress. The model was considered valid for either compressive or tensile stresses.

3. Finite element models
3.1 Program VecTor3

Program VecTor3 is a nonlinear finite element program that has been developed at the University
of Toronto for the analysis of reinforced concrete solids.

The 3D stress state is related to the 3D strain state through a constitutive material matrix, as
shown below:

{o}=[D]{e}—{0o,} a7)

where {0} is the stress vector, [D] is the material stiffness matrix, and {€} is the strain vector, and
{o,} is used to model elastic offsets;
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{o,}=[D.1{€} (18)

where [D,] is the material stiffness matrix for concrete, and {&’} is the strain vector to represent
Poisson’s strains or expansions. An expression to represent elastic offsets in steel will be similar to
that of Eq. (18).

The material matrix [D] is given in terms of the secant stiffness moduli, Poisson’s ratio v, and
shear moduli G in three directions (i.e., local, global or principal directions). Secant moduli vary at
each load state as a function of the stress state.

It is assumed in VecTor3 that concrete behaves isotropically before cracking, and orthotropically
afterwards. Cracks are assumed to be smeared within concrete, thus allowing the user to maintain
the same finite element mesh during the analysis process, and not having to change it due to
localized cracks. Although cracks are assumed smeared, stress checks at crack surfaces are
performed to satisfy compatibility and equilibrium.

Steel can be modeled as smeared within the concrete elements, or represented as truss bars
attached to solid elements. In any case, perfect bond is assumed between the two materials.
Buckling is not taken into account when a truss bar is subjected to compression. Bending is also
ignored in its stiffness matrix.

In the material matrix of Eq. (17); [D], comprises the material matrices for concrete and smeared
steel, [D.] and [D;], respectively (in global coordinates). [D;] is the sum of the steel material
matrices, calculated as:

[D,1=3 (D], (19)
i=1
where n is the number of steel components. Thus, the total material matrix can be written as:

[D1=[D 1+, [D,], (20)

i=1

The orthotropic material stiffness matrix used for concrete (Selby and Vecchio 1993) in principal
directions is:

E,0 0 0 0 0

0E, 0 0 0 0

. 1o 0E, 0 0 o0
D=1 0 06, 0 o0 21

0 0 0 0 Gag 0

(0 00 0 0 G

where E; is the secant modulus in the principal direction i=1, 2, 3; and Gj; is the shear modulus
given by

EL'iE('j

Camg 4 E.

(22)

The smeared steel material matrix in i-direction is given by:
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where f; and g; are the stress and strain in the i-direction, respectively, and p;; is the reinforcement
ratio in that direction. It is noted that the secant modulus for steel is determined as:

E=L 24)
8si
At any load stage the secant moduli depends on the stress-strain condition in the direction being
analyzed. In the case of concrete (see Fig. 4):
f ci
E.=3¢ (25)
Ei
where &; is the stress-related strain in that direction. Other strains due to prestress, thermal loading
or lateral expansion (i.e., Poisson’s effect) are introduced as “prestrains” (Vecchio 1992) and
converted into equivalent forces. As lateral expansion changes at each load stage according to the
strain state, its related prestrains are updated at every iteration.
VecTor3 solves for displacements as in a linear elastic program. The global stiffness matrix is the
assembly of element stiffness matrices computed with Eq. (19), and is updated and used to solve for
new displacements as load or imposed nodal displacements are incremented.

3.2 Description of the structural elements analyzed with VecTor3
This section shows the geometry and finite element meshes of seven structural elements modeled

with the program. Four square columns tested by Sheikh and Uzumeri (1980), a rectangular wall
tested by Mander et al. (1988), a circular column tested by Liu et al. (1998), and a shear wall tested
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Fig. 4 Secant stiffness



Compression field modeling of confined concrete 239

NRZZ ISl 7 )
7 TR D
Al j N 2 3
o | =009 NANVZ lo! A,
305 mm s
12 mm 10 mm
| 700
150
<
L 250 mm ' Hoops 6 mm 16-12 mm
l - S: 50 mm

Fig. 5 Cross sections of columns

by Lefas et al. (see Vecchio 1992) were considered. All of the structural elements were subjected to
axial concentric compression with the exception of the shear wall, which was also subjected to
horizontal monotonic load. This selection represented a broad spectrum of cross section shapes,
concrete strengths, and lateral steel arrangements.

The column sections are plotted in Fig. 5, and the finite element meshes in Fig. 6. Only one-
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Fig. 6 Plan view of finite element meshes
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Fig. 7 Vertical view of three-dimensional finite Fig. 8 Wall SW16
element meshes

quarter of the column’s cross sections were modeled due to symmetry. A vertical profile of the
three-dimensional mesh is shown in Fig. 7. Eight-noded bricks were used to model the concrete
elements of the square and rectangular columns, and six-noded wedges were used to model the
circular section. In all the models, truss bars were used to model the ties and hoops, and the
longitudinal reinforcement was smeared within the concrete bricks located at the position of each
bar. In the case of the Lefas er al. wall (SW16), all the reinforcement was embedded within the
concrete bricks. The whole wall was modeled due to the asymmetry of the applied load; a plot of
the wall and its model is shown in Figs. 8 and 9.

The material properties of the elements are given in Tables 1 to 4, where d, is the longitudinal bar

o .

Fig. 9 Finite element mesh for SW16
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Table 1 Sheikh and Uzumeri column propérties

Specimen Longitudinal Steel
a Conf. db As Ps f_‘y Es Esh Esh
Column® " [mm] [mm? (%]  [MPa] [MPa] [MPa] [mm/m]
2A1-1 A 15875 1600 172 367 200000 9220 7.70
4B3-19 B 19.050 3406 3.67 392 196400 6200 7.80
205-17 C 12700 2065 222 407 196400 8960 9.10
4D6-24 D 19.050 3406 3.67 392 196400 6200 7.80
Specimen Tie Steel Concrete
dh Ah Pv .fyh E: ) f c Eo
Column ] [mm¥  [%] [MPa] [MPa] [mm] [MPa] [mm/m]
2A1-1 4.76 17.8 0.80 540 200000 571 375 22
4B3-19 7.94 495 1.80 480 199500 1016 334 22
2C5-17 7.94 49.5 237 480 200000 1016 329 22
4D6-24 6.35 317 2.30 480 199500 381 359 22

4Column dimensions: 305 X 305 mm

Table 2 Liu et al. column properties

Specimen” Tie Steel Concrete
2C80-10850-15 type d, Al Pv fm E, s 1. E,
[mm] [mm?] [%] [MPa] [MPa] [mm] [MPa] [MPa]
spiral 10.3 83.3 6.4 660 217000 50 82 46300
Longitudinal Bars dy Ag Ps 5 E;
12.1 920 1.8 430 198000

¢Column diameter 250 mm
b Calculated by the writers

Table 3 Mander ef al. wall 11 properties

Label Tie Steel
Wall 11 type dy, Ay Py Jyn E; Eg, Esh s
[mm)] [mmz] [%] [MPa] [MPa] [MPa] [mm/m] [mm]
hoops 6.0 28.3 233 310 198000 3200 22.00 50
Longitudinal Steel Concrete
db Asb’ Ps f:v Es Exh Esh fc Ec
[mm] [mm-] [%] [MPa] [MPa] [MPa] [mm/m] [MPa] [MPa]
16.0 3217 3.06 290 191000 3900 24.00 41 31000
20.0 3770 1.86 434 200000? 5000° 8.00° 24.8 24900°

?Wall dimension: 700 mm x 150
bCalculated or assumed by the writers
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Table 4 Material properties of wall SW16

Steel dy A 5
[mm)] [mm?] [MPa]
() (2) (3) 4
Vertical 8.00 50.3 470
Horizontal 6.25 30.7 520
Stirrups 4.00 12.6 420
E} 210000 [MPa]
e’ 2.5 [mm/m]
1. 4.0 [MPa]

“Calculated by the writers
> Assumed

diameter, A; is the total longitudinal bar cross sectional area in the column, p; is the longitudinal
steel ratio with respect to the gross section, f, is the longitudinal steel yielding stress, E; is the initial
steel stiffness, Ey, and &g are the stiffness modulus and strain at hardening, respectively. Also, dj
and A, are the tie diameter and area, p, is the volumetric ratio, Jyn 1s the tie yielding stress, s is the
spacing between sets of ties. It is to be noted that the plain concrete strength of all the specimens
described was taken as 0.85f,”, where f,” is the standard cylinder strength of concrete.

4. Corroboration

The finite element analyses were made using two options: considering or not the effect of
compression softening of concrete due to tensile strains in the direction perpendicular to the applied
load. It was found that compression softening had little effect on well-confined columns (i.e., with
high volumetric ratios and small tie spacings), whereas it did influence the response of poorly-
confined elements. It was apparent that these analyses served as upper and lower bounds to the
actual observed behavior. The maximum loads obtained from the tests are compared to the

Table 5 Maximum analytical to experimental load ratio

Proax Paa. (VecTor3) P (VecTor3)
Researcher Column (test)  (wJ/soft)  (wo./soft) Preg
[kN] [kN] [kN]
Sheikh and Uzumeri 2A1-1 3418 3370 3660 0.99 1.07
2C5-17 3524 3622 4355 1.03 1.24
4B3-19 4094 4137 4277 1.01 1.04
4D6-24 4725 4650 4858 0.98 1.03
Liu et al. 2C80-10S50-15 3880 3324 3850 0.86 0.99
Mander et al. Wall 11 5000 4260 4857 0.85 0.97
Mean 0.95 1.06

Std. Dev. 0.08 0.09
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Table 6 Sequence of events in the loading process
axial strain® tie strain® axial strain
@ spalling @ Ppx @ P
1
Researcher Column Exp. Anal. Exp. Anal. Exp. Anal.
[107°]  [107] [107°]  [107] [107%] [107%]
Sheikh and 2A1-1 1.50 to 1.52 1.90 1.40 3.60 2.98
Uzumeri 2.00
2C5-17 1.50 to 3.29 1.80 2.40 15.70 8.37
2.00
4B3-19 1.50 to 1.20 to 2.30 2.50 6.10 5.50
2.00 1.80
4D6-24 1.50 to 1.60 4.50 5.20 17.70 11.73
2.00
Liu et al. 2C80-10S50-15 2.80 2.00 to 0.32  1.40 (1st peak)* 290  3.24 (1st peak)
2.40 2.50 3.20 (2nd peak) 10.00  9.50 (2nd peak)
Mander et al. Wall 11 2.00 1.80 1.57 1.00 3.00¢ 3.60

“axial strain compressive
btie strain tensile

‘average

9strain at Ppax, not &, at £

analytical peak loads in Table 5; and the sequence of events, such as: axial strain at cracking, tie
strain at maximum load, and peak axial strains are compared with the experimental results in Table
6. The analytical loads were found to be between 95% to 106% of the experimental values, with a
standard deviation between 8 and 9%.

A graphical representation of Table 5 is shown in Fig. 10. There was no significant difference in
the computed values with respect to the experimental ones. Thus, it is apparent that the tentative
model for strength enhancement proposed by Vecchio (1992) can be used in the analysis of
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Fig. 10 Maximum analytical to experimental load ratios
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confined concrete regardless of the element shape (e.g., circular, rectangular, and square columns),
and concrete type (e.g., normal or high strength concrete).

It should also be mentioned that the strength enhancement model represented well the behavior of
both core and cover concrete; the tentative lateral pressure formulation (see Eq. 9) clearly identified
the difference in stress-strain paths followed by the cover and the core. Whereas three-dimensional
compressive stresses were observed in the core concrete in the analytical models in the vicinity of
the tie arrangements; lateral tensile stresses produced cracking of concrete covers, and compression
softening in the axial direction of the columns. As a result, cover spalling was modeled well in all
the columns.

Figs. 11 to 13 show the axial load-axial strain curves for all the columns. As can be seen, the
analytical responses traced with reasonable accuracy of the actual behavior of the specimens.

The experimental and analytical shear-lateral displacement curves for the shear wall SW16 are
shown in Fig. 14, and a plot of the deformed wall near failure is shown in Fig. 15 (horizontal load
applied from left to right). The analytical response was stiffer than the experimental, but the
analytical shear strength was 351 kN, which was only 1% smaller than the actual (the wall shear

2A1-1 5000 - 4B3-19
4000 -
o unsoftened 4000
3000 T e z
Z 4
4 - = 3000 A
g \ / o Experimental unsoftened
§ 2000 - Experimental el S
— 2000 4
= softened ©
g 5 softened
1000 1000 4
0 T T v v T T - )] T T T ]
0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.000 0.005 0.010 0.015 0.020
Axial strain Axial strain
Fig. 11 Axial load-axial strain curves for 2A1-1 and 4B3-19 columns
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Fig. 12 Axial load-axial strain curves for 2C5-17 and 4D6-24 columns
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resistance was 355 kN). VecTor 3 underestimated the lateral displacement; perhaps because no
attempt was made to model base rotation due to rebar slip. However; the analytical curve traced
well the overall response of the wall. Flexural and flexural shear cracks developed at the top beam
and the concealed column on the tension side. Shear cracks spread out into the wall web, and the
bottom of the concealed column on the compression side was subjected to triaxial compressive
stresses reaching a maximum principal compressive stress of 43 MPa (1.15 times 0.85 f.”).

5. Conclusions

The finite element program used for the corroboration of the experimental results is based on a
nonlinear elastic approach which updates at every load or displacement step the material stiffness
matrices of concrete elements and the equivalent forces due to prestrains (such as lateral expansion).
Concrete material matrices are calculated as functions of secant stiffness values in the principal
stress directions. Constitutive material behavior models for strength enhancement, lateral expansion,
concrete softening, and post-peak ductility were examined using the program. The specimens
studied represented different material and geometric properties. The results indicated that
compression field modeling (smeared and rotating crack models) can be effectively used to
represent the behavior of well- and poorly- confined concrete.

The material models used were found to accurately predict the strength and post-peak behavior of
the specimens. It was noted that compression softening of concrete influenced the axial shortening
response of the columns.

A squat shear wall with concealed columns, subjected to constant axial compression and
monotonically increased lateral load, was modeled. It was found that triaxial compression stresses
did occur at one of the concealed columns. The shear strength of the wall was predicted with good
accuracy.

Nonlinear elasticity based on secant stiffness formulation is a viable alternative to fracture
mechanics and plasticity models. The effect of stress-induced strains and offset strains can easily be
considered in the solution of the equilibrium equations at the finite element level and the global
stiffness matrix. Stresses in cracked concrete are considered orthotropic and computed from material
behavior relationships which could be based on plasticity (or fracture mechanics) or empirical
models, thus giving flexibility in the analysis.

Some advantages of this formulation are:

* Good transition between confined and unconfined concrete, and between core and cover concrete.

* Ability to effectively reproduce cover spalling, and to effectively model post-peak behavior of
axially loaded columns with different geometry and steel arrangements.

* Good accuracy and stable numerical solutions.

*Provides potential for testing of empirical design formulations, and undertaking parametric studies.

6. Limitations, recommendations and future work

The analytical responses have an upper bound if softening of concrete is not included in the
program options. If softening is included, a lower bound could occur as both ductility and strength
decrease. Also, buckling of reinforcement in compression has not yet been implemented.
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The following recommendations are made:

*The confinement model should be tested in specimens subjected to moment and axial load (i.e.,
eccentric loads).

* Improvement of the variable Poisson’s ratio model to better model conditions beyond the 0.5 limit.

*Enhancement of the post-peak model for confined concrete in terms of triaxial stresses, to model
ductility and failure conditions.

*Improvements to the tension behavior model for concrete to better model highly ccufined
specimens with practically no cracking of the core.

 Improvements to the definition of lateral pressure in the confinement models to consider uneven

triaxial compressive stress states, such as at the border of a concrete core near peripheral stirrups
in a column.
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