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Analysis of Reinforced Concrete Shells for Transverse

Shear and Torsion

by Taira Yamamoto and Frank J. Vecchio

Finite element formulations are presented for improved analysis of
reinforced concrete shell structures critical in shear. The nonlinear
methodology developed, based on the use of layered isoparametric
finite elements, allows for explicit consideration of out-of-plane
shear deformations. Cracked concrete is treated as an orthotropic
nonlinear material in the context of smeared rotating cracks, and
the tension softening model implemented uses a consistent average
stress-strain approach based on fracture energy.

The accuracy of the formulation is examined by investigating
three different series of test specimens: simple beams, with and
without shear reinforcement, subjected to transverse shear and
flexure; hollow rectangular over- and under-reinforced beams sub-
jected to torsion and flexure; and a scale model of an offshore
structure subjected to hydrostatic pressure. Good agreement
berween predicted and observed response was found for all series
of tests examined.
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INTRODUCTION

Large and highly complex reinforced concrete shell struc-
tures, such as offshore structures, have been built with in-
creasing regularity in recent years. Although typically
analyzed as thin-wall shells in the early design stages, the ac-
tual thickness of the structural elements involved is often
quite large. In such thick-shell structures, the effects of out-
of-plane shear behavior is frequently a critical design issue
and must be expressly addressed. Indeed, many designs in-
corporate substantial amounts of out-of-plane reinforce-
ment; reinforcement that is considerably more expensive and
difficult to place than in-plane reinforcement (Fig. 1). In ap-
plying advanced procedures to the analysis of such struc-
tures, it is thus necessary to incorporate transverse shear
behavior into the analysis algorithm.

Over the last 30 years, a variety of procedures have been
reported in the literature for analysis of concrete shells (Jof-
riet and McNiece 1971; Hand, Pecknold, and Schnobrich
1977; Scordelis and Chan 1987; Hu and Schnobrich 1991;
and Di and Cheung 1993). The majority of these formula-
tions have concentrated on modeling aspects of behavior as-
sociated with flexural mechanisms. Only recently have
researchers become concerned with addressing problems as-
sociated with transverse shear effects, with notable contribu-
tions made by Cervera, Hinton, and Hassan (1987), Harmon
and Zhangyuan (1989), and Polak (1998).

A nonlinear finite element shell analysis program for rein-
forced concrete shells was previously developed (Polak and
Vecchio 1993). The program adopts a layered shell formula-
tion that specifically includes provisions for out-of-plane
shear behavior, and incorporates the constitutive models of
the modified compression field theory (MCFT) (Vecchio
and Collins 1986). While the program was fully corroborat-
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Fig. I—Placement of shear reinforcement in tricell wall of
offshore structure.

ed for various types of element-level behavior, primarily in-
volving panel or slab type structures, it was not extensively
tested for structure-level behavior. In particular, the accura-
¢y in modeling behavior in shear-critical thick-wall shell
structures has not been fully verified.

The work described herein is aimed at improving and cor-
roborating nonlinear analysis procedures for reinforced con-
crete shell structures that are significantly influenced by
shear. Specific objectives are: 1) to develop an appropriate
concrete tension model that can be incorporated into the finite
element shell formulation, consistent with the theoretical ap-
proach of the MCFT; 2) to corroborate the tension model and
analysis procedure for structural elements critical in out-of-
plane shear; 3) to verify accuracy in problems involving tor-
sional stresses and/or in-plane shear; and 4) to investigate be-
havior and modeling accuracy in situations involving
complex three-dimensional and indeterminate actions.

RESEARCH SIGNIFICANCE

The design and behavior of a large reinforced concrete
shell structure is frequently influenced by aspects associated
with out-of-plane shear or torsion. Improper consideration of
these shear mechanisms can result in inadequately reinforced
and potentially unsafe structures, or conversely in an unneces-
sary provision of excessive amounts of expensive transverse re-
inforcement. Currently, many of the analytical procedures
available are inadequate in this regard. The formulations
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presented herein will contribute to more rational and accu-
rate analyses of shear-related problems in concrete shell
structures.

FINITE ELEMENT FORMULATION

The basis for the model formulations and analytical stud-
ies described herein is a nonlinear finite element analysis
(NLFEA) program for reinforced concrete shells described
previously by Polak and Vecchio (1993) and recently re-
fined: program VecTor4. One of the principal features of the
program formulation adopted is the consideration of trans-
verse shear deformations, based on the assumption of a con-
stant normal shear strain through the thickness of the shell
element. The formulation is also based on other typical as-
sumptions used in Mindlin plate theory; that is: 1) normals to
the midsurface remain straight but not necessarily normal af-
ter deformation; and 2) resultant stresses normal to the mid-
surface are negligible.

Degenerated quadratic isoparametric shell elements are
employed in the algorithm developed; specifically, a nine-
noded 42 degree-of-freedom Heterosis element is favored.
Quadratic shape functions are used to describe element ge-
ometry, allowing it to have curved sides and a curved sur-
face. All side and corner nodes have three translational and
two rotational degrees of freedom; the central ninth node has
only the two rotational degrees of freedom. A principal ad-
vantage of the Heterosis element is that it exhibits good be-
havior for both thick and thin shells.

To determine the element stiffness matrix, numerical inte-
gration over the volume is required. For the case of a qua-
dratic shell element, the 3 x 3 rule is the desired order of
gauss quadrature since an element evaluated accordingly
will generally not exhibit numerical difficulties and comply
with convergence criteria. However, especially when thin el-
ements are used, shear locking may occur. The use of the re-
duced 2 x 2 integration rule to evaluate the shear stiffness is
an effective remedy to shear locking. Hence, selective inte-
gration is used; the 3 x 3 rule is used for evaluating the bend-
ing stiffness components and the 2 x 2 rule is used for the
shear stiffness components. When using the reduced integra-
tion rule, problems with zero energy modes may arise. With
the Heterosis element, however, only one zero energy mode
exists, and it is not communicable when more than one ele-
ment is used.

Since reinforced concrete exhibits highly nonlinear material
behavior, an appropriate integration scheme through the thick-
ness must be employed. In VecTor4, a layered shell formula-
tion is used. Up to 16 layers are used to model the shell
thickness, where each layer has the same thickness and
concrete properties. Steel layers are superimposed to model
the in-plane reinforcement. The location of the steel layers
is established by specifying the distance of the centroid of
the reinforcement relative to the top surface of the element.

192

Out-of-plane (transverse shear) reinforcement is treated as
smeared and defined as a property of the concrete layers.

The solution algorithm used in the NLFEA formulation is
a full-load, direct iteration procedure based on variable se-
cant moduli. The solution algorithm accommodates both
nonlinear material and nonlinear geometric behavior. A
complete description of the finite element formulation is giv-
en in Polak and Vecchio (1993).

CONSTITUTIVE MODELING

The constitutive modeling approach used in VecTor4 is
based on the MCFT (Vecchio and Collins 1986). A basic as-
sumption of this theory is that the directions of principal
stress and principal strain coincide; that is, the MCFT is a
smeared rotating crack model. Cracked concrete is treated as
an orthotropic nonlinear elastic material based on average
strains and average stresses over distances spanning several
cracks. The stress-strain relationships used for the concrete
in compression reflect the effects of compression softening,
referring to the reduction in compressive strength and stiff-
ness. of concrete due to the influence of transverse cracking.
For concrete in tension, the formulation employed models
tension stiffening effects; that is, postcracking tensile stress-
es in concrete due to the influence of bond action with the re-
inforcement. These mechanisms were found to be important
in describing the behavior of shear critical elements.

Although the constitutive relations of the MCFT are prin-
cipally cast in terms of average strains and average stresses,
attention is also paid to local stress conditions at crack sur-
faces. Specifically, the possibility of slip along crack surfac-
es due to localized shear stresses and the yielding of
reinforcement across cracks is examined. These local mech-
anisms can be particularly important in elements containing
light amounts of shear reinforcement and subjected to high
shear stresses.

A full description of the constitutive models of the MCFT
is given by Vecchio and Collins (1986).

Concrete tension mechanisms

In cracked reinforced concrete structures, reinforcement
imparts some load (stress) to the concrete between cracks via
bond action. The mechanism, commonly known as tension
stiffening, is effectively responsible for above-zero average
tensile stresses existing in cracked concrete. These average
concrete tensile stresses act to increase the stiffness of the el-
ement, although capacity is still governed by the ability of
the reinforcement to carry the entire load across the cracks.

The influence of the reinforcement is limited to a volume
of concrete in relatively close proximity to the bar; this zone
is termed the tension-stiffening zone (Fig. 2). According to
past CEB guidelines (CEB 1990), it was assumed that the ex-
tent of influence was limited to concrete within 7.5 bar diam-
eters from the reinforcement. Outside this zone, the second
mechanism of postcracking concrete tension prevails, that of
tension softening. Herein, tensile stresses are developed by
the fracture process and by aggregate interlock mechanisms.

Recent developments in the application of fracture me-
chanics to concrete have made it possible to effectively ana-
lyze the postcracking behavior of plain concrete via the finite
element method. These applications have incorporated ten-
sion-softening models to describe the gradual decay of stress
(or strain softening) in plain concrete in tension as cracking
propagates. Several researchers adopting a tension softening
model have obtained fairly consistent results (for example,
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Fig. 2—Layered shell element with tension stiffening zone
defined.

ASCE 1993; Mihashi et al. 1993; and An et al. 1997). Conse-
quently, it is commonly accepted that the consideration of ten-
sion softening is indispensable in analyzing the behavior of
concrete structures with relatively large unreinforced areas.

When a homogeneous plain concrete element subjected to
a uniaxial load is partitioned into finite length elements, as
shown in Fig. 3(a), the stress-strain relationship can be de-
fined from the softening curve (stress versus crack-width re-
lationship) shown in Fig. 3(b). Note that this relationship is
a function of a single element length A; that is, a crack is as-
sumed to occur in a single element. The area under the soft-
ening curve is defined as the fracture energy G. (Although a
simple linear softening curve is shown, a variety of linear
and nonlinear softening models have been proposed.) The
fracture energy Gy is defined as the energy required to form
a complete crack, and is usually obtained from a three-point
bending test of a notched prism. The value of Gcan be esti-
mated by the method proposed in the CEB-FIP Model Code
(1990), in which G¢is a function of the compressive strength
of the concrete Am{the maximum aggregate size. Recent re-
search by Darwin (1999), however, indicates that Gfis rela-
tively independent of the concrete strength or aggregate size.

The complete inclusion of a tension softening model in a
nonlinear finite element analysis algorithm entails the use of
sophisticated bifurcation analysis and small load increments.
This adds considerably to the computational burden of the
analysis. In addition, it is difficult to formulate the crack lo-
calization in a layered shell element because, when a trans-
verse shear crack is considered, the crack localization must
be considered across several layers in an element. Since a
main advantage of the layered shell formulation is that the
stiffness calculation of each layer is independent from the
adjacent layers, the crack localization approach will render
the finite element formulation significantly more complicat-
ed. To overcome these difficulties and make possible the im-
plementation of a tension-softening model in finite element
shell analysis, an average stress-strain approach is envis-
aged. A model formulated accordingly follows.

Proposed tension model

In defining an average stress-strain formulation to model
tension softening behavior, the model must be a function of
a certain representative length of matenial L, in which a crack
is assumed to be distributed uniformly. The representative
length is primarily dependent on the crack spacing, and can
be estimated based on the structure geometry and reinforce-
ment details. For reinforced concrete thick-shell structures
critical in shear, the representative length L, can be taken as
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Fig. 3—Tension softening in concrete: (a) concrete element
subjected to tension; (b) stress-crack formulation approach;,
and (c) stress-strain formulation approach.

=d/2 (1)

where d is the depth to the centroid of the tension reinforce-
ment measured from the compressive face of the shell sec-
tion. Hence, the proposed formulation for the basic tension
softening stress f,|, is as follows

E. g, <g<g,
£
———, £,5§g,<¢,
fern = ( : (2)
€, €
————— fp E,SE <E,
(Er("grh) ch ch 1 te
0, g,<g
where
Erh = EE'L/ (3)
Lr'fl
€ = 58(’}1 (4)
5
fon = ———— (5)

e k(e

The tension softening coefficient k is determined from the
following condition

&

'[f”,, de = (6)

4}

l?

The concrete tensile strength f,” and cracking strain €, can
be established as follows
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where E, is the initial tangent stiffness of the concrete and f,’
is the concrete compressive strength.

Shown in Fig. 4 is the proposed formulation together with
the tension-softening model of the CEB-FIP Model Code
(1990). When a representative length of d is used in the CEB
model, the tension-softening response exhibits a sharp initial
drop at cracking, and a rapid decline thereafter. It was found
that the initial large drop in tensile stress is important in ac-
curately representing behavior at stages of loading prior to
initiation of shear failure. Also shown is the CEB model
based on a representative length of d/2; herein, the initial de-
cline is less abrupt, and the decay thereafter is more gradual.
The gradual decay in tension stress portrayed in the second
variation of the CEB model was found to better predict the
response after the development of shear cracking up to fail-
ure. The proposed model combines these two important fea-
tures: a large initial drop in stress followed by a gradual
decay thereafter.

In cases where transverse (shear) reinforcement is present,
tension stiffening mechanisms add to the tensile stress being
developed. In a typical layered thick-shell formulation, the
stress-strain relationship of the transverse reinforcement is
defined as elastic-plastic; that is, no strain hardening is con-
sidered. In reality, transverse reinforcement has not only
yielded but also hardened in the vicinity of cracks, even
though the average strain may be significantly less than the

194

yield strain. As a consequence, tensile stresses in the con-
crete can continue to be transmitted across cracks after yield-
ing of the transverse reinforcement. To account for these
tension-stiffening effects in the proposed formulation, an ad-
ditional tension term is defined as

for = @-p,- (f,—f,) - cos’®, ©)

where o is the effective hardening coefficient, taken as 0.80;
p; is the transverse reinforcement ratio; f, is the ultimate
strength of the transverse steel; f, is the yield strength of the
transverse steel; and 8,, is the angle of the normal to the crack
with respect to the transverse reinforcement direction. If the
transverse reinforcement has not yielded, the average stress
[ is substituted for the yield stress f, in Eq. (9).

The total tension in the concrete is obtained by adding the
base tension softening stress to the concrete ténsile stress
arising from the strain hardening effect; that is

fcl =fclb+ cle (10)

Note that the previous formulation applies to concrete out-
side the tension-stiffening zones of the in-plane reinforce-
ment. For concrete within the tension-stiffening zones, the
formulations previously proposed in the MCFT apply; that is

fcl = ft

1+ C,El

an

The tension stiffening coefficient ¢, depends on a number
of factors including specimen size and reinforcing bar diam-
eters; however, ¢, = 500 can be taken as an average value. All
reinforcement contributes to tension-stiffening stresses, in-
cluding transverse reinforcement. The contributions, howev-
er, are assumed to diminish to zero as the reinforcement
yields across cracks (refer to Vecchio and Collins 1986).

TRANSVERSE SHEAR TESTS

The analytical procedure was previously corroborated
against test results from simple shell element panels (Polak
and Vecchio 1994) and from slab specimens subjected to
various transverse loading conditions (Vecchio et al. 1993;
Vecchio and Tata 1999). While the correlation between cal-
culated and observed behavior was typically very good,
these specimens were not generally critical in shear. A more
stringent test of the accuracy of the proposed formulation in
modeling transverse shear in thick-shell elements can be ob-
tained by modeling shear-critical beam specimens.

The series of 12 beams tested by Bresler and Scordelis
(1963) provides a suitable range of conditions. The beams
were of various lengths, simply supported and subjected to a
center-point loading; the shear span-depth ratios ranged be-
tween 4 and 7. Three of the beams contained no shear rein-
forcement; the others contained shear reinforcement ratios
ranging from 0.1 to 0.2%. Heavy amounts of longitudinal re-
inforcement were provided to mitigate against flexural fail-
ure. Full specimen details are provided by Yamamoto
(1999).

The three beams without shear reinforcement (OA-1, OA-2,
and OA-3) were found to experience diagonal tension shear
failure shortly after the formation of the first (critical) diag-
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Fig. 5—Comparison of observed and calculated load-
deflection responses for Bresler-Scordelis beams.

onal shear crack. Six of the beams (A-1, A-2, B-1, B-2, C-1,
and C-2) experienced what will be categorized as a shear-
compression failure. Herein, flexural cracks were first ob-
served, followed by the formation of shears cracks, ending
with a failure involving shear/crushing of concrete in the
compression zone. The remaining three beams (A-3, B-3,
and C-3), being long-span and heavily reinforced in flexure,
experienced flexure-compression failures.

The beams were modeled for analysis using shell elements
oriented transverse to the load direction (that is, so that the
shear forces were acting out-of-plane). Due to the symmetrical
nature of the beam details and loading conditions, only 1/2 of
the beams were modeled. A 7 x 1 element mesh was used for
the 3660 mm length beams; an 8 x 1 mesh for the 4570 mm
beams; and a 12 x 1 mesh for the 6400 mm beams. Each ele-
ment employed 12 equal-thickness layers through the 550 mm
beam depth. Loading was represented as an imposed displace-
ment at the beam midspan. Increments of nodal displace-
ment of 0.5 mm were used for the short and middle length
beams, and 1.0 mm for the longer beams.

The calculated load-deflection response for each of the 12
beams is compared with the experimental results in Fig. 5. In
all cases, there is good agreement in terms of predicted
strength, stiffness, and ductility. Particularly noteworthy is
the strong correlation obtained for the beams containing no
shear reinforcement and failing in a shear critical mode (that
is, Beams OA-1, OA-2, and OA-3). In these beams, the ten-
sion-stiffening zone extended only up to approximately the
mid-depth of the cross section, and hence, tension-softening
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Fig. 6—Comparison of experimental and theoretical load
capacities for Bresler-Scordelis beams: (a) without flexural
limit cutoff; and (b) with flexural limit cutoff.

contributions to response were critical. Omitting the tension-
softening contribution results in significantly underestimat-
ed strengths for the OA set of beams. Figure 6(a) compares
the ratio of experimental-to-calculated shear strength for the
12 beams; this ratio was found to have a mean of 0.96 and a
coefficient of variation (COV) of 6.2%. Note, however, that
six of the beams achieved test loads exceeding their theoret-
ical pure moment capacity. If the experimental loads are cut
off at the moment capacities, then the ratio of observed-to-
predicted strength improves to a mean of 0.99 and a COV of
3.8% (Fig. 6(b)). Since the behavior of these beams is highly
dependent on the accurate representation of concrete tensile
stresses, they provide a valuable corroboration of the pro-
posed concrete tension model.
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Fig. 7—Details of Onsongo torsion beams: (a) cross section
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TORSIONAL SHEAR TESTS

In addition to transverse shear, concrete thick shell struc-
tures can be subjected to significant levels of torsional shear
and in-plane shear stresses. Beam tests conducted by Onson-
g0 (1978) provide a useful calibration of the model’s accura-
cy in this regard. Onsongo tested two series of hollow
concrete beams: the TBO series and the TBU series. In each,
five hollow concrete beams were subjected to a uniform
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Fig. 8—Flexure-torsion strength interaction diagrams for
Onsongo beams: (a) TBU Series beams; and (b) TBO Series
beams.

bending moment and torque along their lengths and loaded
to failure. All beams had essentially the same reinforcement
conditions, but the concrete strengths between the two series
differed. The TBO series beams employed lower concrete
strengths and were characterized as over-reinforced, where-
as the TBU series beams contained higher-strength concrete,
and hence, were under-reinforced. In each series, the test
beams varied in the ratio of moment to torque applied, rang-
ing from flexure-dominant to torsion-dominant. The beam
section and reinforcement details are shown in Fig. 7(a);
again, full details are provided by Yamamoto (1999).

Since the test specimens were subjected to constant mo-
ment and torque along their lengths, only a portion of the
specimens were modeled. Figure 7(b) and (c) show the finite
element model and concrete section details used. A 648 mm
length of beam was modeled with a mesh of 56 elements,
each of which employed four layers through their thickness.
To safely apply forces to the structure, 14 subsidiary ele-
ments were added at each end of the model; these end-zone
elements were defined with stiff elastic material properties
and only one layer through the thickness. Bending and tor-
sional moments were applied as nodal forces at the member
ends. Approximately 20 to 25 equal-increment load stages
were used to load the beams to failure.

Fig. 8 contains flexure-torsion interaction diagrams for the
two series of beams, comparing the experimental and calcu-
lated strengths. Shown in Fig. 9 are the torque-twist and
torque-hoop strain response curves for specimens TBO3 and
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TBU3, being representative of the level of correlation ob-
tained. In general, the analytical results agree reasonably
well with the experimentally observed behavior for both the
TBO and TBU series in facets of response including
strength, stiffness, ductility, and failure mode. The ratio of
experimental-to-calculated ultimate load for the two series
combined had a mean of 1.00 and a COV of 6.9%.
It should be noted that all of the beams sustained a shear/
crushing failure of the concrete, with most prior to yielding of
* either the longitudinal or hoop reinforcement. This being the
case, the inclusion of adequate models for representing con-
crete tension-stiffening, concrete tension-softening, and con-
crete compression-softening mechanisms was indispensable
in accurately capturing the postcracking response. Spalling
was observed in some of the specimens subjected to high
torque, but was not accounted for in the analytical model.
The influence of spalling was minor since the concrete cover
used in these specimens was uncommonly thin.

CONDEEP CELL MODEL

The test specimens examined to this point involved well-
controlled, statically determinate load conditions. In com-
plex shell structures, the variation of out-of-plane shears and
moments is generally statically indeterminate, rapidly
changing, and concentrated at joints and transition points.
The modeling of strength and behavior in such structures is
considerably more challenging. To examine the accuracy of
the proposed formulation in such situations, a large-scale hy-
drostatically loaded cell structure was modeled.

The test conducted by Helmy (1998) involved a 1:13 scale
model of a typical storage cell in an early Condeep structure (a
concrete gravity-base offshore structure) shown in Fig. 10(a).
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Fig. 10—Details of Condeep model tested by Helmy: (a)
overall geometry; and (b) reinforcement details.

The specific detail modeled by the test structure was the
junction between the upper dome and the cylindrical cell
wall of the storage cell. The reinforcement used in the con-
struction of the model was 12-gage galvanized steel wire,
provided in the form of welded wire fabric for the cylinder
walls, and as individual wires for the dome and ring beam ar-
eas. Figure 10(b) shows the reinforcement details near the
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Fig. 11—(a) Photo of shear failure below ring-beam of off-
shore model; and (b) cut-away view.

dome-wall junction. Note that no shear reinforcement is ex-
plicitly provided. A high-strength concrete of 75 MPa
strength, with a maximum coarse aggregate of 4.5 mm
crushed limestone, was used in casting the specimen. To
simulate prestressing in the ring-beam, a 7 mm diameter
high-strength prestressing wire was placed circumferentially
at the intersection of the upper dome and cell wall.

The model was subjected to external hydrostatic pressure.
Water pressure was gradually increased until the specimen
failed (severe loss of containment) at an applied pressure of
1.48 MPa. At this ultimate load, a sudden shear failure oc-
curred across the cell wall just below the wall-dome junc-
tion. A cut-away view of the failure zone is seen in Fig. 11.
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Fig. 12—Finite element mesh used to model Helmy structure.

The finite element mesh used to model a quarter-section of
the test specimen is shown in Fig. 12 (note that an axisym-
metrical element was not available in the finite element pro-
gram used). A total of 162 quadrilateral elements were used
in the modeling. Geometry constraints required that a 94 mm
radius hole be left at the apex of the dome; it is believed that
this had some influence on the predicted deflections at the
top of the dome but did not otherwise significantly influence
the calculated strength and response of the structure. An ini-
tial hydrostatic pressure of 1.01 MPa was applied to the ver-
tical outside face of the ring-beam elements only; this initial
load was used to represent the effects of prestressing of the
ring-beam. Additional water pressure loads were then ap-
plied to ali external surfaces of the model, and increased in
0.05 MPa increments until the maximum load capacity of the
structure was exceeded.

Convergence was quick and stable to loads of about 1.40
MPa pressure, indicating an essentially uncracked response.
At 1.45 MPa, a sudden and brittle shear failure occurred in
the elements immediately below the ring-beam; this was in
excellent agreement with the ultimate load and failure mode
observed experimentally. Shown in Fig. 13(a) and (b) are the
observed and calculated load-deflection responses at the
quarter-points of the dome and at the midheight of the cylin-
der wall, respectively. While some disparity can be seen, the
correlation between predicted and observed response is rea-
sonably good. It is presumed that the modeling detail of the
dome had some influence on the accuracy of the dome de-
flections. The accurate simulation of the failure of the cell
wall in transverse shear, particularly since the wall contained
no shear reinforcement, again provides valuable corrobora-
tion of the concrete tension model.

CONCLUSIONS
A concrete tension-softening model was developed, using an
average strain approach, in a form substantially different from .
that commonly used for tension softening. Most formulations
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Fig. 13—Comparison of theoretical and experimental load-
deflection response for Helmy structure: (a) vertical dis-
placements of dome; and (b) radial displacement of cell
wall at midheight.

will use a smeared cracking assumption and principles of
fracture mechanics to pursue the modeling of the discretized
governing crack. The formulation proposed herein, although
also utilizing the concepts of smeared cracking and fracture
energy, describes the average behavior of structural ele-
ments. The average strain approach is favored herein be-
cause it is consistent with the formulations of the MCFT
and other similar smeared rotating crack models, and it can
easily be incorporated into general nonlinear finite element
formulations.

The proposed tension model was implemented in program
VecTor4, a nonlinear finite element analysis program for con-
crete thick-shell structures. The analysis program was then
tested against the results of three series of experiments. In the
modeling of beams critical in transverse shear, the formula-
tion was able to accurately portray all aspects of response in-
cluding strength, stiffness, ductility, and failure mode.
Governing failure mechanisms ranging from diagonal-ten-
sion failure to shear-compression failure and flexure-com-
pression failure were equally well-represented. In the
analysis of beam elements critical in torsional shear, similar-
ly good correlation was found. Lastly, the analysis program
was used to model a large-scale domed cylindrical structure
subjected to hydrostatic pressure and failing in transverse
shear. The strength and failure mode were well represented.

A tension-softening model is indispensable in accurately
representing the behavior of concrete structures containing
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large areas of plain (unreinforced) concrete. The consider-
ation of concrete tension stiffening, within an appropriate
effectiveness zone, and concrete compression softening are
also essential in the analysis of reinforced concrete shell
structures where in-plane or out-of-plane shear is a con-
cern. The formulations proposed herein appear to provide
good correlations with observed response, and are amena-
ble to implementation in finite element models using layered
elements.

NOTATION
¢, = tension stiffening coefficient
d = depth to centroid of longitudinal reinforcement
E. = initial tangent modulus of concrete
f/ = compressive strength of concrete
fi1 =  average principal tensile stress in concrete
f{ = tensile strength of concrete
f. = ultimate stress of reinforcement
fy = yield stress of reinforcement
.Gy = fracture energy
k; = tension softening coefficient

L, representative length

o = effective hardening coefficient

€4 = average principal tensile strain in concrete

€, = concrete cracking strain

p; = transverse reinforcement ratio

8, = inclination of crack with respect to transverse reinforcement
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