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A General Shear Design Method

by Michael P. Collins, Denis Mitchell, Perry Adebar, and Frank J. Vecchio

A simple, unified method is presented for the shear design of both pre-
stressed concrete members and nonprestressed concrete members. The
method can treat members subjected to axial tension or axial compression
and treats members with and without web reinforcement. The derivation of
the method is summarized and the predictions of the method are compared
with those of the current ACI Code.
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The shear design provisions of the 1995 ACI Code! con-
sist of about 43 empirical equations for different types of
members and different types of loading. some of which are
illustrated in Fig. 1. In 1973, the ACI-ASCE Shear
Committee? expressed the hope that these “design regula-
tions for shear strength can be integrated, simplified, and
given a physical significance.” As shown by the growth in
the number of ACI shear design equations (see Fig. 2). the
code has not met this desirable goal. It is interesting to note
that, prior to 1963, the ACI shear design procedure was so
simple that only four equations were required.

Most of the shear design equations given in Fig. | were in-
troduced in either the 1963 or 1971 edition of the ACI Code.**
These design equations were developed in the period follow-
ing the 1955 air-force warehouse shear failures® and rely on
the traditional concept of adding a concrete contribution V. to
the shear reinforcement contribution V/ calculated on the basis
of the 45 deg truss equation.

Since 1971 there has been an intensive research effort aimed
at improving design methods for shear (see Fig. 3). The re-
search has shown that, in general, the angle of inclination of
the concrete compression is not 45 deg. and that equations
based on a variable angle truss provide a more realistic basis
for shear design. In addition. tests of reinforced concrete pan-
els subjected to pure shear® improved the understanding of the
stress-strain characteristics of diagonally cracked concrete.
These stress-strain relationships made it possible to develop
an analytical model. called the modified compression field
theory. that proved capable of accurately predicting the re-
sponse of reinforced concrete subjected to shear.
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The objective of this paper is to present briefly a simple,
general shear design method based on the modified compres-
sion field theory. This design method, recently introduced by
Collins and Mitchell,” has been adopted by the Ontario
Highway Bridge Design Code,® the Canadian Standards As-
sociation Concrete Design Code,? and the AASHTO LRFD
specifications.'® The method is summarized in Fig. 1.

SHEAR RESPONSE OF CRACKED CONCRETE
Tests of reinforced concrete panels subjected to pure shear

(see Fig. 4) demonstrated that even after cracking, tensile
stresses exist in the concrete and that these stresses can sig-
nificantly increase the ability of reinforced concrete to resist
shear stresses.

Cracked reinforced concrete transmits load in a relatively
complex manner involving opening or closing of pre-exist-
ing cracks. formation of new cracks, interface shear transfer
at rough crack surfaces, and significant variation of the
stresses in reinforcing bars due to bond. with the highest
steel stresses occurring at crack locations. The modified
compression field model attempts to capture the essential
features of this behavior without considering all of the de-
tails. The crack pattern is idealized as a series of parallel
cracks all occurring at angle 8 to the longitudinal direction.
In lieu of following the complex stress variations in the
cracked concrete, only the average stress state and the stress
state at a crack are considered {see Fig. 4(b) and 4(c)]. As
these two states of stress are statically equivalent, the loss of
tensile stresses in the concrete at the crack must be replaced
by increased steel stresses or. after vielding of some of the
reinforcement at the crack. by shear stresses on the crack in-
terface. The shear stress that can be transmitted across the
crack will be a function of the crack width. Note that shear
stress on the crack implies that the direction of principal
stresses in the concrete changes at the crack location.
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The average principal tensile strain €, in the cracked con-
crete is used as a “damage indicator” that controls the aver-
age tensile stress f) in the cracked concrete, the ability of the
diagonally cracked concrete to carry compressive stresses f,
and the shear stress v, that can be transmitted across a crack.

The principal compressive stress in the concrete f, is relat-
ed to both the principal compressive strain €, and the princi-
pal tensile strain €, in the following manner [see Fig. 5(a)]

fa =f2ma.{'2f‘z—(§7)j (1)
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Fig. I—Comparison of ACI and proposed shear design approaches
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Fig. 3—Research into shear design methods

where €, has been taken as -0.002.

After cracking, the principal tensile stress in the concrete f} is
related to the principal tensile strain €, as follows [see Fig. 5(b)]

X

- -/('r (4)

f
' 1+ ,/500¢,

where the cracking stress f., can be taken as 4 JJT' psi
(0.33 Jf’ MPa). For large values of €, the cracks will become
wide and the magnitude of f; will be controlled by the yielding
of the reinforcement at the crack and by the ability to transmit
shear stresses v,; across the cracked interface [see Fig. 5(b)].
The shear stress that can be transmitted across the crack is a
function of the crack width w and the aggregate size a |see Fig.
4(c)], as given by

A,
(b) Calculated average stresses (c) Local stresses at crack 2.16,Jf. . .
. . , i = psi and in. (%)
Fig. 4—Reinforced concrete panels subjected to shear 03+ 24w
T a+0.63

From Eq. (1), the principal compressive strain for the loading
portion of the stress-strain relationship is

For MPa and mm units. replace the 2.16 by 0.18 and the

g, = =0.002(1 = [T=f2/fora) () 0.63 by 16.
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(a) Softening of compressive stress-strain curve due to
transverse tensile strain

Eq.(6)

€., €, at crack slip €,

(b) Average tensile stresses in cracked concrete as a function of €,

Fig. 5—Stress-strain relationships for cracked concrete

If the stirrups have reached their yield stress and the
crack begins to slip, the average tensile stress in the con-
crete f; is limited to

f, = v_jtan8 ©6)

The previous stress-strain relationships, together with equilib-
rium and compatibility, can be used to predict the load-deforma-
tion response of reinforced concrete beams subjected to shear.!!
In addition, these relationships can be used as the basis for non-
linear finite element formulations.'>!3

DESIGN OF STIRRUPS FOR SHEAR

In applying the modified compression field theory to the de-
sign of beams, it is appropriate to make a number of simplifying
assumptions. As illustrated in Fig. 6, the shear stresses are
assumed to be uniform over the effective shear area b, d,. The
highest longitudinal strain €, occurring within the web is
used to calculate the principal tensile strain €,. For design, €,
can be approximated as the strain in the flexural tension re-
inforcement. The determination of €, for a nonprestressed
beam is illustrated in Fig. 7. For a prestressed concrete mem-
ber, the concrete surrounding the reinforcement will remain
in compression until the applied tension exceeds the pre-
stress force A, f,o, where f,, is the stress in the tendon when
the surrounding concrete is at zero stress. In lieu of more ac-
curate calculations, f,,, can be taken as 1.10 times f,,.

Hence, for design
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Fig. 6—Beam subjected to shear, moment, and axial load
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Fig. 7—Determination of strain €, for nonprestressed beam
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but £, < 0.002, where A, and APS are the area of
non-prestressed and prestressed longitudinal reinforcement on
the flexural tension side of the member. From strain comp-
atibility, the principal tensile strain €; can be related to
the longitudinal strain €,, the direction of the principal
compressive stress 6, and the magnitude of the principal
compressive strain €, in the following manner

€, = €.+ (E,-8,) cot’6 (8

Hence, as the longitudinal strain €, becomes larger and the
inclination © of the principal compressive stresses becomes
smaller, the “damage indicator” €, becomes larger. The
nominal shear strength V, of a member can be expressed as

39



Af.
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From the expressions for the average tensile stress in the
cracked concrete [Eq. (4) and (6)}, the tensile stress factor
can be determined as

B = 4cotd 2.16

T 1+ [500e, 24w
103+ 6

psi and in. (10)

For MPa and mm units, replace the 4 by 0.33, the 2.16 by
0.18, and the 0.63 by 16. The crack width w is taken as
the crack spacing times the principal tensile strain €,.

It can be seen from the previous expressions for B that
as the tensile straining of the concrete increases (i.e., €,
increases), the shear that can be resisted by tensile stress-
es in the concrete V. decreases. The value of the principal
tensile strain €, will depend on the magnitudes of the lon-
gitudinal strain €,, the principal compressive strain €,
and the inclination 6 of the principal stresses [see Eq. (8)].
Strain €, can be found from Eq. (3). In using this equation,
the principal compressive stress f, can be conservatively tak-
en as

f, = v(tan@ + cot6) (11)

where
V,,—V,, 1
V=g (12)

VoV

From Eq. (3), (8), and (11), €, can be expressed as

g, =€ .+ {ex
’ ' (13)

+ 0.002( |- Aﬁ-fl (tan + cot®) (0.8 + 170s1)ﬂ cot0

c

Table 1—Values of 6 and 3 for members with web
reinforcement

v Longitudinal strain £, x 1000
I <0 |<025]<050|<1.00|<150|<200
Odeg | 27.0 | 285 290 | 360 | 410 | 430
<0.050
] 488 | 349 | 251 2.23 1.95 1.72
6deg | 27.0 | 275 | 300 | 360 | 400 | 420
<0.075
B 4388 | 3.01 247 | 216 1.90 1.65
0 deg 23.5 26.5 30.5 36.0 38.0 39.0
<0.100
B 326 | 254 | 241 2.09 1.72 145
Odeg | 250 | 290 | 320 | 360 | 365 | 37.0
<0.150 -
B 255 | 245 | 228 1.93 1.50 1.24
Odeg | 275 | 310 | 330 | 345 350 | 36.0
<0.200 -
B 245 | 233 | 210 1.58 121 1.00
9deg | 300 | 320 | 330 | 355 | 385 | 415
<0.250
B 230 | 201 1.64 1.40 1.30 1.25

Note: for § values in MPa units divide given values by 12.
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To use Eq. (9) to determine the required stirrups, the designer
needs to determine appropriate values of 6 and 3. For this pur-
pose, Table 1 gives suitable values of § and B as functions of the
longitudinal strain €, and the shear stress level v/f.. While the
values in Table 1 were calculated assuming a diagonal crack
spacing of 12 in. (305 mm) and a maximum aggregate size of 3/
41in. (19 mm), it is believed that these values are appropriate for
the full range of beams containing stirrups.

The 6 values given in Table 1 have been chosen to insure
that the stirrup strain ¢, is at least equal to 0.002 and to insure
that, for highly stressed members, the principal compressive
stress f, in the concrete does not exceed the crushing strength
Frmar- Within the range of values of 6 that satisfy these re-
quirements, the values given in Table 1 will result in close to
the smallest amount of shear reinforcement.

While the values in Table 1 can be applied to a range of
values of €, and v/f.’ (e.g., ® = 36 deg and § = 2.09 can be
used provided that €, is not greater than 1 x 103 and v/f,’
is not greater than 0.10), they were calculated for the up-
per limits of the range. Linear interpolation between the
values given in Table 1 could be used, but it is usually not
worth the effort.

At a particular section of a member subjected to V,,, M,
and N,, the required shear strength is determined from

Vv, <oV

u i (14)
where the strength reduction factor ¢ can be taken as 0.85.

The amount of stirrups required at the section can then be
found from Eq. (9) as

Vll
V2 - VoY, (15)

While this calculation is performed for a particular sec-
tion, a shear failure caused by yielding of the stirrups in-
volves yielding the reinforcement over a length of beam
about d,cot8 long. Hence, the calculations for one section
can be taken as representing a length of beam, d,cotd
long, with the calculated section being in the middle of
this length. Thus, near a support, the first section to be
checked is the section 0.5d,cot6 from the face of the sup-
port. Near concentrated loads, sections closer than
0.5d.cot@ to the load need not be checked. As a simplifi-
cation, the term 0.5d,cotd may be taken as d,. Since
1963, the ACI Code has required that at least a minimum
area of stirrups be provided whenever V, exceeds one-
half of the shear strength provided by the concrete. For
the design method presented in this paper, it is recom-
mended that a minimum area of stirrups be provided if

V,>050 (V. +V) (16)

where the minimum requirement is

Af,
b‘uj;»‘ >0.72,[f" psi
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For MPa units replace the 0.72 by 0.06. -

DESIGN OF LONGITUDINAL REINFORCEMENT

Fig. 8 illustrates the influence of shear on the tensile forces
in the longitudinal reinforcement. While the moment is zero
at the simple support B, there still needs to be considerable
tension in the longitudinal reinforcement near the support.
The required tension in the bottom reinforcement at Support
B can be determined from the free body diagram in Fig. 8(b)
by taking moments about Point C and assuming that the ag-
gregate interlock force in the crack that contributes to V,_ has
a negligible moment about Point C. For this nonprestressed
beam, the tensile force required at the inner edge of the bear-
ing area is

T = (%—O.SVS)COKO 17

Eq. (17) gives the additional tension due to shear. Hence,
at a section subjected to a shear V,, a moment M,, and an ax-
ial force N,, the longitudinal reinforcement on the flexural
tension side of the member must satisfy

\

M N, (V
A f,+A >_E+O.5—+($“—0.5VS—ijcot8 (18)

pslrs=9d," "9

At maximum moment locations, the shear force changes
sign and hence, the inclination of the diagonal compressive
stresses changes. At direct supports and point loads, this
change of inclination is associated with a fan-shaped pattern
of compressive stresses radiating from the point load or the
direct support, as shown in Fig. 8(a). This fanning of the di-
agonal stresses reduces the tension in the longitudinal rein-
forcement caused by the shear (i.e., angle 6 becomes
steeper). Due to this effect, tension in the reinforcement does
not exceed that due to the maximum moment alone.

MEMBERS WITHOUT WEB REINFORCEMENT

In evaluating the P factors given in Table 1, it was assumed
that the diagonal cracks in webs containing stirrups would be
spaced about 12 in. (305 mm) apart. For members not contain-
ing web reinforcement, this assumption may be unconservative;
hence, it is inappropriate to use the B factors in Table 1 to eval-
uate the shear strength of members without web reinforcement.

For members without stirrups, the ability of the cracked con-
crete to transmit shear is primarily governed by the width of the
diagonal cracks [see Eq. (10)]). The crack width can be taken as
the principal tensile strain €, multiplied by the crack spacing.
Hence, for a given value of g, the shear strength will be a func-
tion of the crack spacing, with more widely spaced cracks re-
sulting in lower shear capacities.

Fig. 9 illustrates the assumptions made in this design method
concerning the crack spacings. For members without stirrups,
the diagonal cracks will become more widely spaced as © ap-
proaches zero. The crack spacing when 8 = 90 deg is called s,
and this spacing is primarily a function of the maximum dis-
tance between reinforcing bars or between reinforcing bars and
the flexural compression zone.
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Fig. 8—Influence of shear on forces in longitudinal rein-
forcement

The factor B, which is the indicator of the ability of the
cracked concrete to transmit shear, is a function of 0, €}, and s,,.
For given values of €, and s, and a chosen value of 6, the factor
B can be calculated from Eq. (9), (10), (12), and (13). Table 2
lists the values of 6 that will result in the highest $ values for
cracked concrete. The P values in Table 2 were derived assum-
ing that the maximum aggregate size a was 3/4 in. (19 mm).
However, the tabulated values can be used for other aggregate
sizes by using an equivalent spacing parameter s,, [see Eq.
(10)] such that

e = voe (19
For mm units, replace the 1.38 by 35 and the 0.63 by 16. For
members without well-distributed crack control reinforcement,
the crack spacing parameter s, will increase as the member size
increases. It is apparent from Table 2 that an increase in s, re-
sults in a decrease in shear capacity.

Convincing evidence of the reduction in shear stress
capacity that occurs as members become larger was pro-
vided by an extensive experimental program conducted
in Japan by Shioya. et al.'*!> In the program, lightly re-
inforced beams without stirrups and having effective
depths d ranging from 4 to 118 in. (100 to 3000 mm) were
uniformly loaded until failure. Fig. 10 compares the ob-
served failure shear stresses for one series of these beams
with the failure shears predicted by both the 1995 ACI
Code! expressions and the general method. It can be seen
that the largest beam in this series failed at a shear stress
less than one-half of the failure shear predicted by the
1995 ACI Code equations.
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Fig. 9—Influence of reinforcement on spacing of diagonal
cracks

Table 2—Values of 6 and B for members without web

reinforcement
Longitudinal Strain ¢, x 1000
Sl
<0 | €025 { <050 | £1.00 | <150 | £2.00
6deg | 270 | 290 31.0 34.0 36.0 38.0
<5in.
B 494 | 378 3.19 2.56 2.19 193
6deg | 300 | 340 370 400 430 450
< 10 in.
B 465 | 345 2.83 2.19 1.87 1.65
6deg | 320 | 370 400 450 480 50.0
<15in.
B 447 | 321 2.59 1.98 1.65 145
6deg | 350 | 410 450 51.0 54.0 57.0
<£25in.
B 419 | 285 226 1.69 1.40 1.18
6deg | 380 | 480 53.0 59.0 63.0 66.0
<50 in
B 383 | 239 1.82 127 1.00 0.83
<j00 | Bdeg | 420 | 550 62.0 69.0 720 75.0
m. B 347 1.88 135 0.87 0.65 0.52

Note: For B values in MPa units divide given values by 12.
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PROPOSED SHEAR DESIGN PROCEDURE
The general equations of the modified compression field

theory, which are intended to account for the complex be-
havior of diagonally cracked concrete, are more suited for -
computer solutions (e.g., see program RESPONSE) than for
hand calculations. With the 6 and B tables, the method be-
comes simple enough to solve by hand. For design, the steps
are as follows:

Step 1—At the design section, calculate the shear stress v
from Eq. (12).

Step 2—Calculate the longitudinal strain €, from Eq. (7).

Step 3—For members with web reinforcement, choose the
values of 8 and P from Table 1. For members without web
reinforcement, choose the values of 0 and B from Table 2.

Step 4—For members without web reinforcement, use Eq.
(9) to determine the nominal strength. For members with
web reinforcement, use Eq. (9) to determine the required
amount of web reinforcement.

Step 5—Use Eq. (18) to check the capacity of the longitu-
dinal reinforcement.

EXPERIMENTAL VERIFICATION
The ACI Code shear design expressions were obtained

by first categorizing beams and columns into the follow-
ing groups: nonprestressed members subjected to shear
and flexure only; nonprestressed members subjected to
axial compression; nonprestressed members subjected to
axial tension; and prestressed members.

For each of the previous groups, an empirical equation
was developed to provide a good fit to the available ex-
perimental data. Most of the equations were derived in the
1962 ACI/ASCE Shear Committee report'® using the data
available at that time.

In contrast, the shear design method in this paper was
derived from the modified compression field theory that
is based on equilibrium, compatibility, and the stress-
strain characteristics of cracked reinforced concrete. In
this fundamental approach, no fitting factors were em-
ployed to match the predictions to available beam tests.
Thus, it is of considerable interest to compare the accura-
cy of the equations resulting from this new method with
the accuracy of the traditional ACI equations.

In Fig. 11 the experimentally determined failure shears
from 528 tests were compared to the failure shears predict-
ed by both the ACI equations and the method presented in
this paper. These tests encompass a wide range of cross-
sectional shapes, sizes, material properties, and types of
loading, as summarized in Table 3. The specimens selected
were those that failed primarily due to high shear stresses.
Specimens with short shear spans were excluded because
such members should be designed using either strut-and-tie
models!>'7-18 or the ACI deep-beam equations,' rather than
the sectional design approaches described in this paper.

As seen in Fig. 11, the proposed general method pre-
dicts the failure shears more accurately than the equations
of the current ACI Code. Table 3 indicates situations
where the ACI shear design method can be very inaccu-
rate. These situations include large, lightly reinforced
members and members subjected to high axial compres-
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sion where the ACI equations can be very unconservative.
On the other hand, for uniformly loaded members, mem-
bers with inclined prestressing tendons, and members
subjected to high axial tension, the ACI equations can be
extremely conservative.

CONCLUSIONS

It is believed that the method presented in this paper is “inte-
grated,” “simplified,” and gives “a physical significance” to the
parameters being calculated. For example, the shear carried by
tensile stresses in the concrete V, is made a function of the lon-
gitudinal straining in the web of the member €,. As €, increases,
V. decreases. Increasing the magnitude of the moment or ap-
plying axial tension increases €, and hence, decreases V.. Ap-
plying axial compression or prestress or increasing the area of
longitudinal reinforcement decreases €, and hence, increases V...

A key feature of the new procedures is that they explicitly
consider the influence of shear upon the longitudinal rein-
forcement. It is believed that if engineers understand that
shear causes tension in the longitudinal reinforcement, they
will avoid some of the more serious detailing errors that are
sometimes made in current practice.
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NOTATION

Apg = area of prestressed longitudinal reinforcement on flexural ten-
sion side of member

A = area of longitudinal reinforcing bars on flexural tension side
of member

A, = area of shear reinforcement within distance s

a = maximum aggregate size

b, = effective web width taken as minimum web width within
effective shear depth d,

d = distance from extreme compression fiber to centroid of longi-
tudinal tension reinforcement

d, = effective shear depth taken as flexural lever arm which need

not be taken less than 0.9d. For prestressed members, d need not
be taken less than 0.84 in determining d,

E, = modulus of elasticity of prestressing tendons

E, = modulus of elasticity of reinforcing bars

£ = specified compressive strength of concrete

fer = cracking strength of concrete

Joo = stress in prestressed tendon when surrounding concrete is at
zero stress

fie = effective stress in prestressed tendon after all losses

fi = residual tensile stress in cracked concrete

f = principal compressive stress in concrete

Lrmax = crushing strength of diagonally cracked concrete

h = overall height of member

M, = factored moment taken as positive

N, = factored axial load taken as positive for tension, negative for
compression

s = spacing of shear reinforcement

Sy = crack spacing parameter for members without stirrups

See = equivalent value of s, for beams where aggregate size is not 3, in.

V. = shear strength provided by tensile stresses in cracked concrete
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Fig. 10—Influence of member size on shear stresses at failure
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Fig. 11—Correlation of experimental and predicted failure
shears for 528 tests

v, = nominal shear strength

v, = vertical component of prestressing

V, = shear strength provided by stirrups

V., = factored shear force taken as positive

B = tensile stress factor indicating ability of cracked concrete to
transmit shear

€, = principal tensile strain in cracked concrete

€, = principal compressive strain in cracked concrete

€/’ = strain in concrete when f, reaches f’

6 = angle of inclination of principal compressive stress in cracked
concrete with respect to longitudinal axis of member

0] = strength reduction factor
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Values of B and 6 for Sections With Transverse Reinforcement
(See Clause 11.4.4.)
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Figure 11-2

Values of B and 6 for Sections Not Containing Transverse Reinforcement

(See Clause 11.4.4.)
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