The Modified Compression-Field Theory for Reinforced Concrete Elements Subjected to Shear

by Frank J. Vecchio and Michael P. Collins

An analytical model is presented that is capable of predicting the load-deformation response of reinforced concrete elements subjected to in-plane shear and normal stresses. In the model, cracked concrete is treated as a new material with its own stress-strain characteristics. Equilibrium, compatibility, and stress-strain relationships are formulated in terms of average stresses and average strains. Consideration is also given to local stress conditions at crack locations.

The stress-strain relationships for the cracked concrete were determined by testing 30 reinforced concrete panels under a variety of well-defined uniform biaxial stresses including pure shear. It was found that cracked concrete subjected to high tensile strains in the direction normal to the compression is softer and weaker in compression than concrete in a standard cylinder test. Additionally, significant tensile stresses were found in the concrete between the cracks even at very high values of average tensile strain.

Keywords: aggregate interlock; axial loads; biaxial loads; cracking (fracturing); crack width and spacing; finite element method; offshore structures; reinforced concrete; shear strength; stiffness; stresses; stress-strain relationships; structural analysis; tension; tests.

Fig. 1 — Structures idealized as an assemblage of membrane elements

This paper will focus on the response of rectangular reinforced concrete elements subjected to in-plane shear and axial stresses (i.e., membrane stresses). Such a membrane element may be used in modeling the response of such structures as those shown in Fig. 1, where the load is primarily carried through the action of in-plane stresses.

Predicting the response of the simple reinforced concrete element shown in Fig. 1 is not as straightforward a task as it would first appear. Under a particular set of loads, new cracks may form, pre-existing cracks may propagate or close, and the forces will be resisted by a structural system consisting of concrete bodies joined by reinforcing bars. The forces in the reinforcing bars will vary along the lengths of the bars, and will be highest at the crack locations. The concrete bodies will

Received July 29, 1985, and reviewed under Institute publication policies. Copyright © 1986, American Concrete Institute. All rights reserved, including the making of copies unless permission is obtained from the copyright proprietors. Pertinent discussion will be published in the January-February 1987 ACI Journal if received by Oct. 1, 1986.
be bounded by rough crack surfaces capable of transmitting shear and compression at the contact locations, but not capable of transmitting tension. However, tensile stresses will exist in the concrete lying between the cracks. To date, there is no accepted theory capable of predicting the full load-deformation response of such an element. This was made evident in a recent international competition\(^6\) in which 43 leading researchers from 13 different countries attempted to predict the load-deformation response of 4 of the reinforced concrete panels which were tested in this investigation. For one of the elements (PV25 in Table 1), the ratio of the highest to lowest prediction of stress was six to one. Not even the best entry was capable of predicting strengths to within 15 percent for each of the four panels. It should be emphasized that in choosing the four elements for the competition, elements whose behavior would be difficult to predict were deliberately chosen; thus, in none of the elements was the load capacity governed by overall yielding of the reinforcement. The predictions were strongly dependent on the assumed stress-strain characteristics of the concrete. While such heavily reinforced elements subjected to high shear are unusual in typical buildings, they often occur in offshore platforms and nuclear containment structures.

The modified compression-field theory presented here has been developed from the compression-field theory\(^6,10\) for reinforced concrete in torsion and shear. In both models, the cracked concrete is treated as a new material with its own stress-strain characteristics. Equilibrium, compatibility, and stress-strain relationships are formulated in terms of average stresses and average strains. While the original compression-field theory ignored tension in the cracked concrete, this model takes into account tensile stresses in the concrete between the cracks, and employs experimentally verified average stress-average strain relationships for the cracked concrete.

DEFINITION OF THE PROBLEM

The membrane element shown in Fig. 2 represents a portion of a reinforced concrete structure. It is taken to be of uniform thickness and relatively small size, and
contains an orthogonal grid of reinforcement with the longitudinal \((x) \) and transverse \((y) \) axes chosen to coincide with the reinforcement directions. Loads acting on the element’s edge planes are assumed to consist of the uniform axial stresses \(f_x \) and \(f_y \), and the uniform shear stress \(v_{xy} \). Deformation of the element is assumed to occur such that the edges remain straight and parallel. The deformed shape is defined by the two normal strains \(\varepsilon_x \) and \(\varepsilon_y \), and the shear strain, \(\gamma_{xy} \).

The problem at hand is to determine how the three in-plane stresses \(f_x, f_y, \) and \(v_{xy} \), are related to the three in-plane strains \(\varepsilon_x, \varepsilon_y, \) and \(\gamma_{xy} \). In solving this problem, the following additional assumptions will be made:

1. For each strain state there exists only one corresponding stress state; situations in which the influence of loading history is significant will not be treated.
2. Stresses and strains can be considered in terms of average values when taken over areas or distances large enough to include several cracks.
3. The concrete and the reinforcing bars are perfectly bonded together at the boundaries of the element (i.e., no overall slip).
4. The longitudinal and transverse reinforcing bars are uniformly distributed over the element.

Tensile stresses and tensile strains will be treated as positive quantities while compressive stresses and strains will be taken as negative.

COMPATIBILITY CONDITIONS

Having assumed that the reinforcement is anchored to the concrete, compatibility requires that any deformation experienced by the concrete must be matched by an identical deformation of the reinforcement. Any change in concrete strain will be accompanied by an equal change in steel strain.

Nonprestressed reinforcement has the same initial strain as the surrounding concrete. Hence

\[
\varepsilon_{xx} = \varepsilon_{xy} = \varepsilon_x
\]
(1)

and

\[
\varepsilon_{yy} = \varepsilon_{xy} = \varepsilon_y
\]
(2)

If the three strain components \(\varepsilon_x, \varepsilon_y, \) and \(\gamma_{xy} \) are known, then the strain in any other direction can be found from geometry. The Mohr’s circle of strain shown in Fig. 3 elegantly summarizes the transformations involved. Useful relationships which can be derived from its geometry include

\[
\gamma_{xy} = \frac{2 (\varepsilon_x - \varepsilon_y)}{\tan \theta}
\]
(3)

\[
\varepsilon_x + \varepsilon_y = \varepsilon_1 + \varepsilon_2
\]
(4)

and

\[
\tan^2 \theta = \frac{\varepsilon_x - \varepsilon_2}{\varepsilon_y - \varepsilon_2} = \frac{\varepsilon_1 - \varepsilon_y}{\varepsilon_1 - \varepsilon_x} = \frac{\varepsilon_y - \varepsilon_2}{\varepsilon_1 - \varepsilon_2} = \frac{\varepsilon_1 - \varepsilon_x}{\varepsilon_1 - \varepsilon_y}
\]
(5)
where ϵ_t is the principal tensile strain and ϵ_c is the principal compressive strain.

EQUILIBRIUM CONDITIONS

The forces applied to the reinforced concrete element are resisted by stresses in the concrete and stresses in the reinforcement. For the free-body diagram shown in Fig. 4, the requirement that the forces sum to zero in the x-direction can be written as

$$\sum_{A} f_x \, dA = \sum_{A_c} f_{cx} \, dA + \sum_{A_s} f_{sx} \, dA$$

(6)

Ignoring the small reduction in concrete cross-sectional area due to the presence of reinforcing bars, Eq. (6) becomes

$$f_x = f_{cx} + \rho_{cx} \cdot f_{sx}$$

(7)

In a similar fashion, the following equilibrium conditions can be derived

$$f_y = f_{cy} + \rho_{cy} \cdot f_{sy}$$

(8)

$$v_{xy} = v_{cx} + \rho_{cx} \cdot v_{sx}$$

(9)

and

$$v_{xy} = v_{cy} + \rho_{cy} \cdot v_{sy}$$

(10)

Assuming that

$$v_{cx} = v_{cy} = v_{cxy}$$

the stress conditions in the concrete are fully defined if f_{cx}, f_{cy}, and v_{cxy} are known.

The Mohr's circle for the concrete stresses shown in Fig. 5 yields the following useful relationships

$$f_{cx} = f_{c1} - v_{cxy}/\tan\theta_c$$

(11)

$$f_{cy} = f_{c1} - v_{cxy} \cdot \tan\theta_c$$

(12)

and

$$f_{c1} = f_{c1} - v_{cxy} \cdot (\tan\theta_c + 1/\tan\theta_c)$$

(13)

STRESS-STRAIN RELATIONSHIPS

Constitutive relationships are required to link average stresses to average strains for both the reinforcement and the concrete. These average stress-average strain relations may differ significantly from the usual local stress-local strain relations determined from standard material tests. Furthermore, the average stress-average strain relationships for the reinforcement and for the concrete will not be completely independent of each other, although this will be assumed to maintain the simplicity of the model.
The axial stress in the reinforcement will be assumed to depend on only one strain parameter, the axial strain in the reinforcement. It will be assumed further that the average shear stress on the plane normal to the reinforcement resisted by the reinforcement is zero. In relating axial stress to axial strain, the usual bilinear uniaxial stress-strain relationship shown in Fig. 6 will be adopted. Thus

\[f_{\alpha} = E_{\alpha} \cdot \epsilon_{\alpha} \leq f_{\alpha} \] \hspace{1cm} (14)

\[f_{\beta} = E_{\beta} \cdot \epsilon_{\beta} \leq f_{\beta} \] \hspace{1cm} (15)

\[v_{\alpha} = v_{\beta} = 0 \] \hspace{1cm} (16)

In regard to the concrete, it will be assumed that the principal stress axes and principal strain axes coincide

\[\theta_{\alpha} = \theta \] \hspace{1cm} (17)

To complete the model, relationships between the principal compressive stress and the principal compressive strain and between the principal tensile stress and the principal tensile strain are required.

EXPERIMENTAL PROGRAM

To obtain the necessary information, 30 reinforced concrete elements were subjected to simple well-defined loading conditions (see Table 1). While the majority of the tests were conducted in monotonic pure shear, some elements were subjected to uniaxial compression, combined biaxial compression and shear, combined biaxial tension and shear, reversed cyclic shear, and changing load ratios. In addition to loading conditions, the prime variables included percentage of transverse reinforcement, percentage of longitudinal reinforcement, and concrete strength.

The test specimens were 890 mm square x 70 mm thick (35 x 35 x 2.75 in.). They were reinforced with two layers of welded wire mesh with the wires running parallel to the edges of the element. The smooth wire meshes typically had a 50 mm (2 in.) grid spacing, were heat-treated, and showed a ductile response. A clear cover of 6 mm (0.25 in.) was provided over the longitudinal bars. Maximum aggregate size was 6 mm (0.25 in.).

Five steel "shear keys" were cast into each of the four edges of the test specimen and were anchored to the concrete by shear studs. The specimens were loaded by forces applied to the shear keys using 37 double-acting hydraulic jacks and a network of links as shown in Fig. 7. To house the jack-and-link assembly, a steel box-section reaction frame was built (see Fig. 8). A lateral support frame was provided to resist any out-of-plane displacements of the specimens. Any combination of shear and tension or compression could be applied to the test specimens by varying the magnitude and direction of the forces in various groups of links.

Fig. 6 — Stress-strain relationships for reinforcement

Fig. 7 — Jack-and-link assembly used to apply shear and normal stresses

Fig. 8 — The membrane element tester
AVERAGE STRESS-AVERAGE STRAIN RESPONSE OF CONCRETE

The directions of principal strains in the concrete deviated somewhat from the directions of principal stresses in the concrete (see Fig. 10). However, it remains a reasonable simplification to assume that the principal strain axes and the principal stress axes for the concrete coincide.

The principal compressive stress in the concrete f_{c2} was found to be a function not only of the principal compressive strain ε_c but also of the co-existing principal tensile strain ε_t. Thus, cracked concrete subjected to high tensile strains in the direction normal to the compression is softer and weaker than concrete in a standard cylinder test (see Fig. 11). The relationship suggested is

$$f_{c2} = f_{c2,\text{max}} \cdot \left[2 \left(\frac{\varepsilon_t}{\varepsilon_c} \right)^2 - \left(\frac{\varepsilon_t}{\varepsilon_c} \right)^4 \right]$$ \hspace{1cm} (18a)

where

$$f_{c2,\text{max}} = \frac{1}{0.8 - 0.34 \varepsilon_t/\varepsilon_c} \leq 1.0$$ \hspace{1cm} (18b)

Note that as ε_t is a negative quantity (usually -0.002), increasing ε_t will reduce $f_{c2,\text{max}}/f_c$.

The relationship between the average principal tensile stress in the concrete and the average principal tensile strain is nearly linear prior to cracking and then shows decreasing values of f_{c1} with increasing values of ε_t (see Fig. 11). The relationship suggested prior to cracking (i.e., $\varepsilon_t \leq \varepsilon_c$) is

$$f_{c1} = E_c \cdot \varepsilon_t$$ \hspace{1cm} (19)

where E_c is the modulus of elasticity of the concrete which can be taken as $2f_c/\varepsilon_c$.

The relationship suggested after cracking (i.e., $\varepsilon_t > \varepsilon_c$) is

$$f_{c1} = \frac{f_c}{1 + \sqrt{200 \varepsilon_t}}$$ \hspace{1cm} (20)

TRANSMITTING LOADS ACROSS CRACKS

The stress and strain formulations described deal with average values and do not give information regarding local variations. At a crack, the tensile stresses in the reinforcement will be higher than average, while midway between cracks they will be lower than average. The concrete tensile stresses, on the other hand, will be zero at a crack and higher than average midway between cracks. These local variations are important because the ultimate capacity of a biaxially stressed element may be governed by the reinforcement's ability to transmit tension across the cracks.

Fig. 12 compares the calculated average stresses (Plane 1) with the actual local stresses that occur at a crack (Plane 2). The critical crack direction is assumed normal to the principal tensile strain direction. While the calculated average shear stress on Plane 1 is zero (in
terms of average stresses it is a principal plane), there may be local shear stresses on Plane 2. These shear stresses \(\nu_{ct} \) may be accompanied by small local compressive stresses \(f_{ct} \) across the crack.

As the applied external stresses \(f_x, f_y, \) and \(\nu_{xy} \) are fixed, the two sets of stresses shown in Fig. 12 must be statically equivalent. Assuming a unit area for both Plane 1 and Plane 2, the requirement that the two sets of stresses produce the same force in the \(x \)-direction is

\[
\rho_{ax} f_{ax} \sin \theta + f_{ax} \sin \theta = \rho_{ax} f_{ax} \sin \theta - f_{ax} \sin \theta - \nu_{ct} \cos \theta
\]

(21)

The requirement that the two sets of stresses on Plane 1 produce the same force in the \(y \)-direction is

\[
\rho_{ay} f_{ay} \cos \theta + f_{ay} \cos \theta = \rho_{ay} f_{ay} \cos \theta - f_{ay} \cos \theta + \nu_{ct} \sin \theta
\]

(22)

Eq. (22) can be rearranged as

\[
\rho_{ay} (f_{ay} - f_{ay}) = f_{at} + f_{at} - \nu_{ct} \tan \theta
\]

(23)

While Eq. (21) can be rearranged as

\[
\rho_{ax} (f_{sx} - f_{ax}) = f_{ax} + f_{at} - \nu_{ct}/\tan \theta
\]

(24)

Equilibrium Eq. (23) and (24) can be satisfied with no shear stress on the crack and no compressive stresses on the crack only if

\[
\rho_{ax} (f_{sx} - f_{ax}) = \rho_{ax} (f_{sx} - f_{ax}) = f_{at}
\]

(25)

However, the stress in the reinforcement at a crack cannot exceed the yield strength, that is

\[
f_{sx} \leq f_{sy}
\]

(26)

and

\[
f_{sy} \leq f_{sy}
\]

(27)

Hence, if the calculated average stress in either reinforcement is high, it may not be possible to satisfy Eq. (25). In this case, equilibrium will require shear stresses on the crack.
For the vast majority of concretes, cracking will occur along the interface between the cement paste and the aggregate particles. The resulting rough cracks can transfer shear by aggregate interlock (see Fig. 13). The relationships between the shear across the crack \(v_{ci} \), the crack width \(w \), and the required compressive stress on the crack \(f_{ci} \) have been experimentally studied by a number of investigators, including Walraven.\(^{12}\) Based on Walraven's work, the following relationship was derived (see Fig. 14)

\[
v_{ci} = 0.18 \, v_{cmax} + 1.64 \, f_{ci} - 0.82 \, \frac{f_{ci}}{v_{cmax}}
\]

where

\[
v_{cmax} = \frac{\sqrt{-f_{ci}}}{0.31 + 24 \, w/(a + 16)}
\]

and where \(a \) is the maximum aggregate size in millimeters and the stresses are in MPa. If inch and psi units are being used, the numerator of Eq. (29) should be multiplied by 12, and 16 in the denominator should be replaced by 0.63.

The crack width \(w \) to be used in Eq. (29) should be the average crack width over the crack surface. It can be taken as the product of the principal tensile strain and the crack spacing \(s_p \); that is

\[
w = e_t \cdot s_p
\]

where

\[
s_p = \frac{1}{\sin \theta + \frac{\cos \theta}{s_{max} + s_{my}}}
\]

Fig. 12 — Comparison of local stresses at a crack with calculated average stresses

Fig. 13 — Transmitting shear stresses across crack by aggregate interlock

Fig. 14 — Relationship between shear transmitted across crack and compressive stress on crack
and where s_{nu} and s_{nv} are the indicators of the crack control characteristics of the x-reinforcement and the y-reinforcement, respectively.

Thus, in checking stress conditions at the crack surfaces, a combination of the shear and compressive stresses v_y and f_y must be determined to satisfy Eq. (23) through (29). If, because of steel yielding at the crack, a solution is not possible, then the calculated average principal tensile stress f_{t1} must be reduced until a solution is possible.

SOLUTION TECHNIQUE

Given the strains in a reinforced concrete element, it is a reasonably direct procedure to calculate the stresses which cause these strains. The only iteration that may be required is that involved in determining f_y if the reinforcement is not capable of transmitting the tension in the concrete across the cracks.

To find the element’s strains, given the stresses, is a more difficult problem that requires a trial and error solution. The Appendix presents a suitable computational procedure to determine the response of a biaxially loaded element.

EXAMPLE OF PREDICTION RESPONSE

Specimen PV20 was loaded in pure shear (see Table 1). For this specimen, the crack control parameters were estimated to be $s_{nu} = 47$ mm (1.9 in.) and $s_{nv} = 44$ mm (1.7 in.), and the cracking strength of the concrete was taken to be $0.33 \sqrt{-f_{cu}^2} = 1.47$ MPa (210 psi). Using the solution procedure outlined in the Appendix, the element’s response was calculated as described in Table 2 and Fig. 15. Note that at failure, the principal compressive stress in the concrete was only about 45 percent of the cylinder strength, and that even for tensile strains as high as 0.0075 the average tensile stress in the cracked concrete is predicted to be 0.66 MPa (95 psi). Fig. 16 shows the appearance of the specimen after failure. The failure can be described as a concrete shear failure.

![Fig. 15 — Comparison of calculated and observed response of Specimen PV20 (1 MPa = 145 psi)](image)

![Fig. 16 — Specimen PV20 after failure](image)

Table 2 — Predicted response of PV20

<table>
<thead>
<tr>
<th>$e_t \times 10^3$</th>
<th>$\theta_0 \deg$</th>
<th>f_{cu} MPa</th>
<th>f_{ct} MPa</th>
<th>v_{xy} MPa</th>
<th>f_{t1} MPa</th>
<th>f_{i2} MPa</th>
<th>f_{i1} MPa</th>
<th>f_{vi} MPa</th>
<th>f_{ii} MPa</th>
<th>γ_{xy} MPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.067</td>
<td>44.9</td>
<td>1.6</td>
<td>1.31</td>
<td>1.33</td>
<td>0.06</td>
<td>1.5</td>
<td>0</td>
<td>147</td>
<td>74</td>
<td>0.12</td>
</tr>
<tr>
<td>0.50</td>
<td>42.8</td>
<td>46</td>
<td>1.11</td>
<td>1.65</td>
<td>0.10</td>
<td>37</td>
<td>0</td>
<td>169</td>
<td>98</td>
<td>0.60</td>
</tr>
<tr>
<td>1.00</td>
<td>42.0</td>
<td>97</td>
<td>1.01</td>
<td>2.11</td>
<td>0.16</td>
<td>73</td>
<td>0</td>
<td>209</td>
<td>129</td>
<td>1.15</td>
</tr>
<tr>
<td>1.50</td>
<td>41.6</td>
<td>148</td>
<td>0.94</td>
<td>2.56</td>
<td>0.21</td>
<td>107</td>
<td>0</td>
<td>252</td>
<td>159</td>
<td>1.71</td>
</tr>
<tr>
<td>2.00</td>
<td>41.4</td>
<td>198</td>
<td>0.89</td>
<td>3.03</td>
<td>0.26</td>
<td>140</td>
<td>0</td>
<td>296.9</td>
<td>189</td>
<td>2.29</td>
</tr>
<tr>
<td>3.00</td>
<td>41.3</td>
<td>293</td>
<td>0.82</td>
<td>3.95</td>
<td>0.37</td>
<td>203</td>
<td>0.90</td>
<td>297</td>
<td>305</td>
<td>3.50</td>
</tr>
<tr>
<td>5.00</td>
<td>37.9</td>
<td>297</td>
<td>0.73</td>
<td>4.37</td>
<td>0.42</td>
<td>269</td>
<td>0.94</td>
<td>297</td>
<td>376</td>
<td>5.70</td>
</tr>
<tr>
<td>7.00</td>
<td>36.3</td>
<td>297</td>
<td>0.67</td>
<td>4.55</td>
<td>0.45</td>
<td>305</td>
<td>0.91</td>
<td>297</td>
<td>410</td>
<td>8.06</td>
</tr>
<tr>
<td>7.50</td>
<td>36.3</td>
<td>297</td>
<td>0.66</td>
<td>4.53</td>
<td>0.45</td>
<td>304</td>
<td>0.89</td>
<td>297</td>
<td>407</td>
<td>8.80</td>
</tr>
</tbody>
</table>

Note: 1 MPa = 145 psi.

SHEAR STRENGTH-AXIAL STRENGTH INTERACTION DIAGRAMS

In the test program previously described, four specimens (PV23, PV25, PV27, and PV28) with nearly identical properties were loaded at different ratios of shear stress to axial stress. In each case, $f_y = f_y$. The average material properties of the four specimens were $f_{cu} = -19.8$ MPa (-2870 psi) and $f_{yy} = f_{xx} = 477$ MPa (69 ksi).

Fig. 17 shows the predicted cracking loads and the predicted failure loads for elements containing 1.79 percent of both x- and y-reinforcement and having the average material properties. Also shown in Fig. 17 are the observed cracking loads and the observed failure loads for the four specimens tested.

Note that there are three rather distinct regions in the shear strength-axial strength interaction diagrams shown in Fig. 17: (1) at high biaxial tensions, yielding of the reinforcement at the cracks controls failure; (2) concrete shear failures govern in the middle regions,
with concrete failing at compressive stresses considerably less than f_c', and (3) at high biaxial compression levels, failure is controlled by f_c' reaching f_c'.

INFLUENCE OF REINFORCEMENT RATIOS ON SHEAR STRENGTH

Approximately two-thirds of the specimens described in Table 1 were loaded in pure shear and had x- and y-reinforcement consisting of wires near each face at 50 mm (2 in.) centers. A study of two series of these panels will be made to learn more about how the reinforcement ratios influence shear strength.

In the first series of five tests (PV2, PV3, PV4, PV6, and PV27), the amount of transverse reinforcement was always equal to the amount of longitudinal reinforcement, but this amount varied from 0.18 to 1.79 percent. The predicted strengths were based on the following average material properties: $f'_c = -25.4$ MPa (-3680 psi) and $f_{xy} = f_{yy} = 442$ MPa (64 ksi).

Fig. 18 shows the predicted strengths together with the observed failure loads. For very small amounts of reinforcement ($\rho_{sx} < f_{u}/f_{d}$), the cracking load will be the maximum load which can be carried by the elements. Beyond that, for a wide range of reinforcement ratios, steel yielding will govern the failure, i.e., $v_u = \rho_{sx} \cdot f_{u}$. For very large amounts of reinforcement, concrete shear failures will govern. Note that for these elements the ACI Code approach of determining the ultimate shear capacity by adding the steel contribution to the cracking load would be unconservative.

In the second series of seven tests (PV13, PV12, PV19, PV20, PV21, PV22, and PV27), the longitudinal reinforcement was kept constant at 1.79 percent while the amount of transverse reinforcement was varied. The predicted strengths were based on the following material properties: $f'_c = -18.9$ MPa (-2740 psi) and $f_{xy} = f_{yy} = 430$ MPa (62 ksi).

Fig. 19 compares the observed and predicted ultimate shear strengths. Note that now even very small amounts of transverse reinforcement are beneficial in increasing shear strength. Yielding of the longitudinal reinforcement at the cracks limits f_u and hence controls the strength for small amounts of transverse reinforcement, while concrete shear failures control the strength for larger amounts of transverse reinforcement.

CONCLUDING REMARKS

The modified compression-field theory is capable of predicting the response of reinforced concrete elements to in-plane shear and axial stresses by considering equilibrium conditions, compatibility requirements, and stress-strain relationships, all expressed in terms of average stresses and average strains. Consideration is also given to local stress conditions at crack locations. Further, newly formulated and experimentally verified constitutive relationships for cracked concrete are incorporated for principal compressive stress-principal compressive strain response, and for principal tensile stress-principal tensile strain response. The theory is schematically summarized in Fig. 20.
The modified compression-field theory is a powerful analytical tool, but is simple enough to be programmed with a handheld calculator. Not only is it capable of predicting the test results reported in this paper, but it has been used by other researchers to successfully predict their test results. In addition, it has proved suitable for predicting the response of beams loaded in shear, flexure, and axial loads, and as a basis for nonlinear finite element analysis programs.

A large-scale test program is now underway to extend the theory to elements subjected to combined membrane stresses, bending stresses, and out-of-plane shear (see Fig. 21).

ACKNOWLEDGMENTS

The research at the University of Toronto which led to the Modified Compression Field Theory was made possible by a series of grants from the Natural Sciences and Engineering Research Council of Canada and by a grant from Ontario Hydro. The considerations of local stresses at a crack were developed by the second author while he was on research leave at the University of Canterbury. This portion of the work was funded by the Road Research Unit of the National Roads Board of New Zealand. The authors would like to express their gratitude to all three organizations for their support.

NOTATION

\(a \) = maximum aggregate size
\(E_c \) = modulus of elasticity of concrete (initial tangent stiffness)
\(E_r \) = modulus of elasticity of reinforcement
\(f'_c \) = maximum compressive stress observed in a cylinder test (negative quantity)
\(f_{tc} \) = principal tensile stress in concrete
\(f_{tc}^* \) = principal compressive stress in concrete (negative quantity)
\(f_{cr} \) = compressive stress on crack surface (positive quantity)
\(f_{cr} \) = stress in concrete at cracking
\(f_{cr} \) = stress in concrete in \(x \)-direction
\(f_{cr} \) = stress in concrete in \(y \)-direction
\(f_n \) = normal stress applied to element
\(f_{cr} \) = average stress in \(x \)-reinforcement
\(f_{cr} \) = stress in \(x \)-reinforcement at crack location
\(f_{cr} \) = average stress in \(x \)-reinforcement
\(f_{cr} \) = stress in \(y \)-reinforcement at crack location
\(f_{cr} \) = stress applied to element in \(x \)-direction
\(f_{cr} \) = stress applied to element in \(y \)-direction
\(f_{y} \) = yield stress of \(x \)-reinforcement
\(f_{y} \) = yield stress of \(y \)-reinforcement
\(s_b \) = spacing of cracks inclined at \(\theta \)
\(s_p \) = average spacing of cracks perpendicular to the \(x \)-reinforcement
\(s_p \) = average spacing of cracks perpendicular to the \(y \)-reinforcement
\(v_{xy} \) = shear stress on crack surfaces
\(v_{xy} \) = maximum shear stress a crack of given width can resist
\(v_{xx} \) = shear stress on \(x \)-face of concrete
\(v_{yy} \) = shear stress on \(y \)-face of concrete
\(v_{xy} \) = shear stress on \(x \)-reinforcement
\(v_{xy} \) = shear stress on \(y \)-reinforcement
\(v_e \) = maximum shear stress element can resist
\(v_{xy} \) = shear stress on element relative to \(x \), \(y \) axes
\(w \) = crack width
\(\varepsilon_1 \) = principal tensile strain in concrete (positive quantity)
\(\varepsilon_2 \) = principal compressive strain in concrete (negative quantity)

Fig. 20 — The modified compression-field theory for membrane elements

Fig. 21 — The shell element tester
APPENDIX — SOLUTION TECHNIQUE FOR DETERMINING RESPONSE OF BIAXIALLY STRESSED ELEMENTS

It will be assumed that f_s and f_r are constant and that it is desired to find the relationship between shear stress v_s and the resulting shear strain γ_{rs}. For simplicity, assume no prestressed reinforcement.

Step 1 — Determine the crack control characteristics of the x-reinforcement and the y reinforcement. Use more refined empirical equations, or $s_m = 1.5 \times$ maximum distance from x-bars and $s_m = 1.5 \times$ maximum distance from y-bars.

Step 2 — Choose a value of ϵ, at which to perform the calculations.

Step 3 — Estimate principal compressive stress direction θ.

Step 4 — Calculate average crack width w using Eq. (31) and (30).

Step 5 — Estimate average stress in weaker reinforcement; assume that this is the y-reinforcement. Hence, estimate f_y.

Step 6 — Calculate average tension in the concrete f_t, using Eq. (19) and (20), subject to the condition that

$$f_t \leq f_{cr} (0.18 + 0.3k) \tan \theta + \rho \left(f_{cr} - f_s\right)$$

where $k = 1.64 - 1/\tan \theta$, but $k \geq 0$; and where f_{cr} is given by Eq. (29).

Step 7 — Calculate shear stress v_s, from equilibrium

$$v_s = f_s - \rho f_o$$

Step 8 — Calculate f_o from equilibrium using Eq. (13).

Step 9 — Calculate f_{cr} for given ϵ using Eq. (18).

Step 10 — Check that $f_o/f_{cr} \leq 1.0$. If greater than 1.0, then solution is not possible; return to Step 3 and choose θ closer to 45 deg or return to Step 2 and choose a lower ϵ.

Step 11 — Calculate ϵ, using Eq. (18b)

$$\epsilon = \epsilon' \cdot (1 - \sqrt{1 - f_o/f_{cr}})$$

Step 12 — Calculate ϵ, from geometry using Eq. (5);

$$\epsilon = \frac{\epsilon_s + \epsilon_r \cdot \tan \theta}{1 + \tan \theta}$$

Step 13 — Calculate f_s, using Eq. (15).

Step 14 — Check if f_s, calculated agrees with estimated f_s. If not, return to Step 5 with new estimate of f_s.

Step 15 — Calculate ϵ, from geometry using Eq. (4).

Step 16 — Calculate f_o, using Eq. (14).

Step 17 — Calculate f_t from equilibrium

$$f_t = f_o - \rho f_s$$

Step 18 — Check if f_t, calculated agrees with given f_t. If not, return to Step 3 and make new estimate of θ. Increasing θ increases f_t.

Step 19 — Calculate stresses on crack v_s and f_t

$$f_{cr} = f_o - \rho (f_s - f_o)$$

If $f_{cr} \leq 0$, then $v_s = 0$ and $f_t = 0$. Go to Step 20.

REFERENCES

6. ACI Committee 318, "Building Code Requirements for Reinforced Concrete (ACI 318-83)," American Concrete Institute, Detroit, 1983, 111 pp.

If $\Delta f_{ci} > 0$, then $C = \frac{\Delta f_{ci}}{\tan \theta} - 0.18 \nu_{c\max}$

If $C \leq 0$, then $f_{ci} = 0$ and $\nu_{ci} = \Delta f_{ci}/\tan \theta$

Otherwise

$$A = 0.82/\nu_{c\max} \text{ and } B = \frac{1}{\tan \theta} = 1.64$$

$$f_{ci} = (-b - \sqrt{b^2 - 4AC})/2A$$

$$\nu_{ci} = (f_{ci} + \Delta f_{ci})/\tan \theta$$

Step 20 — Calculate reinforcement stresses at crack f_{cr} and f_{cw}.

$$f_{cr} = f_{ci} + (f_{ci} + f_{ci} - \nu_{c\max}/\rho_{c})$$

$$f_{cw} = f_{ci} + (f_{ci} + f_{ci} + \nu_{c\max}/\rho_{c})$$

Step 21 — Check that reinforcement can carry stresses at crack. Because of the way in which ν_{ci} and f_{ci} were calculated, f_{cw} will not exceed f_{ci}. However, the calculated value of f_{cw} may exceed f_{ci}. If it does, the reinforcement is not capable of transmitting the loads across the crack; assume a lower f_{ci} and return to Step 7.

Step 22 — Calculate shear strain γ_{ci} from geometry

$$\gamma_{ci} = 2(\epsilon_i - \epsilon_o)/\tan \theta$$

To obtain the complete response of the element, these calculations are repeated for a range of values of ϵ_i, starting from ϵ_i less than cracking ($\epsilon_o = 0.05 \times 10^{-6}$) and increasing ϵ_i until the maximum shear is obtained.

If at failure:

i. f_{ci} is limited by the condition in Step 6, then slipping on the crack governs the failure.

ii. f_{ci} is limited by $f_{ci\max}$, then crushing or shear failure of the concrete governs.

iii. f_{ci} is limited by the requirement that $f_{cw} \leq f_{ci}$, then yielding of the x-reinforcement at the crack governs.