TowARD COMPRESSION-FIELD ANALYSIS
OF REINFORCED CONCRETE SOLIDS

By F. J. Vecchio' and R. G. Selby’

ABsTRACT: Finite-element formulations are presented for the analysis of rein-
forced concrete solids. Cracked reinforced concrete is treated as an orthotropic
nonlinear elastic material based on a smeared, rotating crack model. Secant-stiff-
ness moduli are defined for concrete and reinforcement, and these are used in the
development of an eight-noded regular hexahedral element. Procedures are dis-
cussed by which the formulations can be implemented into existing linear elastic
algorithms to provide nonlinear analysis capabilities. The constitutive relations im-
plemented in the formulations are relations extrapolated from the two-dimensional
models of the modified compression field theory (MCFT). The accuracy of the
constitutive models and finite-element formulations are examined by analyzing a
series of overreinforced beams subjected to bending and torsion. Excellent agree-
ment is found between predicted and observed response. The performance char-
acteristics and potential applications of the analysis procedure are discussed, and
areas in need of further research are identified.

INTRODUCTION

Finite-element procedures for the three-dimensional analysis of reinforced
concrete structures have been available for several years. The formulations
that have been developed, often using different approaches, are typically
quite sophisticated and powerful, and are constantly being improved. This
advancement in technology, however, has not been matched by a similar
effort to develop and implement realistic constitutive models to represent
accurately the complex nonlinear behavior of cracked reinforced concrete.
As such, the ability of finite-element procedures to model accurately rein-
forced concrete solids remains unsatisfactory (Collins et al. 1985).

The modified compression field theory (MCFT) (Vecchio and Collins 1986)
was formulated to predict the response of reinforced concrete under general
two-dimensional stress conditions. The theory treated cracked reinforced
concrete as an orthotropic nonlinear elastic path-independent material based
on a smeared, rotating crack model. Conditions of equilibrium and com-
patibility were treated in terms of average stresses and average strains. Local
stress conditions at crack locations were also considered. Based on the re-
sults of an extensive series of panel tests, new constitutive relations were
derived. Of particular significance were the effects of softening of concrete
in compression due to co-acting transverse tensile strains, and the effects of
postcracking tensile stresses in the concrete.

The constitutive relations of the MCFT were incorporated into various
two-dimensional finite-element algorithms (Adeghe 1986; Stevens et al. 1987,
Cook and Mitchell 1988). In particular, a simple secant-stiffness-based fi-
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nite-element formulation was developed that was adaptable to existing linear
elastic algorithms (Vecchio 1990). Comparisons with test results showed that
these formulations, on the strength of the constitutive modeling, typically
provided excellent predictions of the nonlinear response of membrane-type
structures (Vecchio 1989).

In this paper, the secant-stiffness-based formulation of a nonlinear finite-
element analysis algorithm is extended to the three-dimensional case. Ex-
trapolations of the constitutive relations of the MCFT are made and imple-
mented into the formulation. By comparing the predictions obtained for a
series of test beams, it is shown that accurate modeling of reinforced con-
crete solids can be achieved.

ELEMENT FORMULATION

In developing the stiffness formulations for a finite element, a material
stiffness matrix D is required to relate stresses {f} to strains {€}, i.e.

= D€} .o (1)

where {f} = [f.f,f:vov).V); and {e} = [€.€€.7,Y,. V). The stiffness matrix
D must be modified, according to an appropriate set of constitutive laws, in
order to capture the nonlinear behavior of reinforced concrete. The form of
the matrix D will also depend on the type of nonlinear solution algorithm
employed. The formulations that follow assume a secant-stiffness approach.

Prior to cracking, reinforced concrete can be considered a linear elastic
isotropic material, with D defined accordingly. After cracking, however, the
concrete and the reinforcement can be considered to contribute separately to
the composite stiffness. Thus, for a concrete element reinforced in n direc-
tions

where D, = stiffness derived from the concrete; and D = stiffness arising
from the reinforcement in the ith direction. There can be any number of
reinforcement components, oriented in any direction.

Cracked concrete can be modeled effectively as an orthotropic material
with the principal stress axcs corresponding te the directions of the principal
average strains. In addition, Poisson’s effect can be considered negligible
after cracking. Thus, the concrete material stiffness matrix evaluated with
respect to the principal axes system, D¢, is

E, 0 0 ©0 0 0
o E, 0 0 0 0
pr=| % O Ea 0 0 O (3)
! 6 0 0 Gu O 0 |
0 0 0 0 G.o O
0 0 o0 0 G_(-lz__

where E,,, E,5, Eos, G.12, G.23, and G5 are secant moduli. The secant moduli
are defined as follows:
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where €., €., €5 = principal concrete strains (€., > €., > €3); and f.,, f.,,
Jf.» = principal concrete stresses in the first, second, and third directions,
respectively.

For each reinforcement component, a corresponding material stiffness ma-
trix D;; can be determined as

(0E; 0 0 0 0 O]
O 00000
. | o 00000
D= 0 0 0 0 0 o e (10)
0O 0000 O
| 0 000 0 0]

where p; = reinforcement ratio; and E,; = secant modulus. The modulus is
calculated from

where €; and f;; = average strain and average stress in the reinforcement,
respectively.

Note that the material stiffnesses D, and D, are evaluated with respect to
their principal (i.e. local) axes systems. Prior to their being added together
according to (2), the component stiffnesses must be transformed to the global-
axes system. The transformations required are as follows:

e = TIDIT . o (12)
and
Dy = ToD T oo (13)

where the transformation matrix T is given (Cook 1981) by
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The direction cosines [, m, n define the direction of the principal concrete
strains [in (12)] or that of the reinforcement component [in (13)]. The ma-
terial stiffness matrix D that results will be fully populated and symmetric.

Having determined an appropriate material stiffness D, the element stiff-
ness matrix k for a particular element can be evaluated using standard pro-
cedures [e.g. Cook (1981)]. As well, prestrain effects in the component ma-
terials (e.g. thermal expansion, prestressing in reinforcement, concrete
shrinkage, residual strains from prior loading, etc.) can be rigorously ac-
counted for in a manner previously described (Vecchio 1990).

An eight-noded regular hexahedron (see Fig. 1), based on linear displace-
ment functions, was chosen for the finite-element formulation. Although it
is a low-powered element, when used in sufficient quantity it can adequately
represent the strain gradients assumed to occur in reinforced concrete. [Sim-
ilar low-powered two-dimensional elements were found to accurately model
the response of reinforced concrete membrane structures (Vecchio 1989).]
The 24-degree-of-freedom hexahedral element allows explicit evaluation of
the element stiffness matrix, avoiding costly numerical integration proce-
dures. Higher-powered elements, if desired, can be formulated using the
same material stiffness approach.

ConsTiTuTiVE MODELING

The secant-stiffness approach utilized in defining the material stiffness ma-
trix is amenable to the implementation of a diverse variety of constitutive
models. It is important to note that in the definition of the secant moduli,
in (4)—(6), the use of uniaxial stress-strain relations is neither implied nor
suggested. Multiaxial, inelastic, or hysteretic formulations resulting in strain
shifts are easily accommodated by implementing the facility for material pre-
strains, as discussed. The finite-element formulation and analyses discussed
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FIG. 2. MCFT Constitutive Relations: (a) Concrete in Compression; (b) Concrete
in Tension; (¢) Reinforcement

hereafter were based on an implementation of the constitutive models of the
modified compression field theory (MCFT) (Vecchio and Collins 1986), ex-
trapolated to three dimensions. The relations used are as follows.

For concrete in the direction of the largest principal compressive strain
(e.3), the stress-strain relation used is

ot () (] o
€ €y

where

fa, = S (16)

€.
0.8 — (0.34 —)
€

and where f. = concrete cylinder strength; and €, = cylinder strain at peak
strength [see Fig. 2(a)]. (Note: both f and €, are negative quantities.) The
reduction in the maximum attainable stress f; _, as a function of the co-
existing transverse tensil strain €., typically represents a significant soft-
ening effect.

For concrete in the direction of the principal tensile strain (e.), prior to
concrete cracking, a linear relation is used

fa = E €., O <eq <€y oo e (17)

where E,. = initial tangent modulus

2f
E. = s (18)
€9




€., = cracking strain

and f,, = cracking stress

Fo=033 VI MPa) ... (20)
After cracking, the decaying function
Jor
Sl T T I 21
1 + 200661

is used to reflect the tension-stiffening effects that are important in accurately
predicting an element’s load-deformation response [see Fig. 2(b)].

The average tensile stresses in the concrete must be transmitted across
cracks. Thus, the stress f,; must not be greater than the sum of the reverse
of strength provided by the reinforcement crossing the crack. Algebraically

fu=< 2 (COS B Pl fyi = Foi) o e v e e e (22)

where f,; = yield stress of the reinforcement; f; = average tensile stress in
the reinforcement; and 6, = angle between the reinforcement and the nor-
mal to the crack surface. If the condition of (22) is not satisfied, then f,
must be reduced accordingly.

Currently, in the absence of a complete three-dimensional model, the in-
termediate principal stress f, is evaluated using the same relationships. Thus,
if €, is compressive, then (15)—(16) are used substituting €., for €.; if €,
is tensile, then (17)—(21) are used.

Stresses in the reinforcement f,;, are evaluated according to a trilinear re-
lation as follows:

fvi = Esiesi €, < Ey,' .......................................... (23a)
Fu = o €< € e e e (23b)
f;‘i :fy,' + El‘.h,-(es,- - E;hi) <fuj €, > L (236‘)

where f,, = yield stress of the reinforcement; E;; = elastic modulus; E,; =
strain-hardening modulus; €, = yield strain; and €, = strain at the com-
mencement of strain hardening [see Fig. 2(c)]. Perfect bond between the
concrete and the reinforcement is assumed.

ANALYSIS PROCEDURE

A procedure for the nonlinear analysis of reinforced concrete solids was
attained by incorporating the material and element formulations described
earlier into an iterative linear elastic finite-element algorithm (program
SPARCS, developed by the writers). A flowchart identifying the major steps
in the analysis scheme is given in Fig. 3. In the iterative procedure, the
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FIG. 3. Flowchart for Nonlinear Analysis Algorithm
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material stiffness D and element stiffness k matrices for each element are
progressively refined until convergence is achieved.

In initiating an analysis, an initial estimate of the material stiffness can
be made by assuming linear elastic isotropic values. Alternatively, the stiff-
nesses determined in a previous analysis (e.g., in preceding load stage) can
be used as the starting values. Given the material stiffnesses, the element
and structure stiffness matrices are assembled. Cholesky decomposition is
used to solve for the nodal displacements, from which element strains are
calculated. The Jacobi method is then used to determine principal strains
and corresponding directions. From the calculated strains, the corresponding
stresses and secant moduli are determined, and new stiffness matrices are
formed. If the secant moduli have changed, the structure is reanalyzed using
the newly computed moduli and the procedure is repeated. Satisfactory con-
vergence is usually achieved within 20-30 iterations. Note that if material
prestrains are involved, the nodal-force vector must be recalculated through
each iteration of the procedure.

SAMPLE CALCULATIONS
The analysis procedure described herein is simple and easily adaptable to
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most existing linear elastic finite-element programs. The procedure is found
to have good convergence characteristics and is numerically stable for a wide
range of structural analysis conditions. Calculations derived from the fol-
lowing simple example will serve as an illustration.

Consider a single element subjected to a uniform three-dimensional stress
condition. This could be interpreted as the stress condition at a point, in a
larger structure, as determined from a global analysis of some kind. The
properties of the element are f, = —35 MPa; f,, = 1.95 MPa; ¢, = —0.0025;
E. = 28,500 MPa; E, = 200,000 MPa; f, = 400 MPa; p, = 0.035; p, =
0.035; and p, = 0.0008. The element is assumed to be subjected to the
following stress condition:

{f} =[-6.01.004.03.03.0IMPa ................ciiiirnernnnan. (24)

Note that the element is heavily reinforced in two directions, which is often
the case in nuclear-containment and offshore structures. With such high re-
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FIG. 4. Convergence Characteristics from Sample Analysis: (a) Secant Moduli;
(b) Strains
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inforcement ratios, realistic constitutive modeling is critical to the accurate
prediction of structural response.

The response of the element was calculated using the program SPARCS,
based on the forrmulations described. The analysis required 26 iterations to
reach the convergence criteria specified. The first iteration assumed linear
1sotropic behavior in defining the material-stiffness matrix. Each successive
iteration was based on the strains calculated in the previous cycle. The final
strains corresponding to the given load condition were found to be

{e} = [—0.0380.631 1.402 1.3512.2121.364] X 10>, ... ... .. ... .. (25)

Shown in Fig. 4 are the convergence patterns exhibited by the secant mod-
uli and by the element strains. The secant moduli are seen to initially undergo
rapid change as behavior moves from uncracked isotropic to cracked ortho-
tropic response. Thereafter, the secant moduli generally converge to stable
values. The strain quantities are also seen to gradually converge, generally
in a monotonic manner. It is anticipated that the number of cycles needed
for satisfactory convergence could be reduced by implementing a variation
of the Newton-Raphson technique or some other method.

In general, the procedure has been found to exhibit similar convergence
and stability characteristics regardless of structure size (i.e. number of ele-
ments) or element properties (e.g. reinforcement patterns). Also, localized
postultimate behavior is modeled without difficulty.

CORROBORATION WITH TEST DATA

To obtain a measure of the suitability and accuracy of the three-dimen-
sional formulation, an investigation was undertaken to model the response
of two series of beams tested in torsion (Onsongo 1978). The beams rep-
resented a difficult test of the analysis procedure because of the complex
loading conditions, involving combined flexure and torsion, and because the
beams were generally overreinforced and governed by failure of the con-
crete. The beams were heavily instrumented, providing many high-quality
data against which the theoretical response would be compared.

The test program was comprised of two series of five beams each. The
“torsion-bending-overreinforced” (TBO) series of beams were overrein-
forced, designed such that neither the longitudinal nor the transverse (i.e.
hoop) reinforcement would yield. The “torsion-bending-underreinforced” (TBU)
series of beams were underreinforced and designed such that at least some
of the reinforcing steel would yield prior to failure. All the beams within a
series had the same reinforcement arrangement and approximately the same
concrete strength. The test variable was the ratio of moment to torque ap-
plied. The testing arrangement of specimens and cross-sectional details are
given in Fig. 5; the loading conditions are defined in Table 1.

Since the beams were subjected to constant moment and torque along their
length, only a partial length of the test beams was considered in the analysis.
A 750 mm length was modeled using a mesh of 1,200 elements and 1,760
nodes (see Fig. 6, and Table 2), resulting in 5,280 degrees of freedom.
Three elements were used through the thickness of the webs and flanges,
and 10 layers of elements were used along the length. The bending moments
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TABLE 1. Test Beam Parameters and Results

Experimental Theoretical
fe M, T, M, T, Experimental/

Beam | (MPa) €0 T/M | (MPa) | (MPa) | Failure mode | (MPa) | (MPa) | Failure mode theoretical

(1) (2 (3) (4) (5) (6) ) (8) (9) (10) (11)
TBOI1 19.5 10.0024 {0 401 0 | CC-TF 365 0 |CC-TF 1.099
TBO2 19.7 ] 0.0024 | 0.261 334 78 CC-TF 313 72 CC-TF 1.067
TBO3 19.1 |0.0024 | 0.701 232 143 | CC 234 144 | CC-AF 0.992
TBO4 20.4 10.0024 | 1.524 117 149 CcC 120 155 CC-AF 0.972
TBOS 20.6 | 0.0024 | 5.059 35 143 {CC:; LT 35 148 | CC-AF; LT 0.987
TBU!I 34.8 10.0031 |0 551 0 JCC-TF; LB 525 0 |CC-TF; LB 1.050
TBU2 34.8 |0.0031 | 0.261 439 104 | CC-TF; LB 466 122 | CC-TF; LB 0.942
TBU3 34.8 10.0031 | 0.696 327 207 CC: LB, TB 331 210 | CC-AF. LB, TB 0.988
TBU4 34.8 | 0.0031 | 1.509 147 195 CC. HAF 166 224 | CC-AF: HT 0.866
TBUS 34.8 10.00311} 5059 41 175 CC; LT, HT 45 201 CC-AF; LT, HT 0.911

Note: CC = concrele crushing: TF = top face; AF = all faces of specimen; LT = yield of longitudinal steel in top facc:
LB = yield of longitudinal stcel in bottom face; HT = yield of hoop steel in top face; and HAF = yield of hoops in all faces.
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FIG. 6. Theoretical Modeling of Test Beams: (a) Finite-Element Mesh; (b) Rein-

forcement Details (See Also Table 2)

and torques were applied as nodal forces at the ends of the beams. The
elements in the final layer at each end were assigned stiffer material prop-
erties to facilitate load transfer and preclude a premature end failure. The
longitudinal reinforcement in the top and bottom flanges, and in the web,
was uniformly smeared over the respective areas. The hoop reinforcement

TABLE 2. Modeling of Reinforcement

Material type Reinforcement Ratio (%)

number x y z
(1) (2) (3) (4)

1 1.076 0 0.949

2 0 1.112 1.104

3 1.112 0 9.247

4 0 4.473 0.949

5 0 4.473 9.247

6 4.303 0 0.949

7 0 4.473 1.104

8 4.473 0 9.247

9 4.303 4.473 0.949

10 4.473 4.473 9.247

11 1.076 1.112 0.949

12 1.112 1.112 9.247
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was concentrated in the outermost band of elements, with two-thirds of the
reinforcement being smeared in this zone. The remaining area of hoop re-
inforcement was smeared over the inner two bands of elements. Thus, the
centroids of the smeared reinforcement essentially coincided with the loca-
tions of the actual reinforcement. The material strengths used were as de-
termined from the test specimens.

The analyses were performed on a CRAY X-MP/24 supercomputer. The
complete load-deformation response for each beam required approximately
80 min of central processing unit (CPU) time. The average number of it-
erations required per load stage was 10—15 at early load stages and 25-30
at later load stages. Approximately 23 seconds of CRAY CPU time was used
per iteration.

The ultimate load and failure mode of the test beams were predicted very
well. For the TBO series, the ratio of the experimental to theoretical ultimate
strength had a mean of 1.02 and a coefficient of variation of 5.4%. For the
TBU series, the mean and coefficient of variation were 0.96 and 6.8%, re-
spectively. The results are summarized in Fig. 7 and Table 1. In the TBO
series, the failure mode involved crushing of the concrete in the top flanges
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FIG. 7. Comparison of Experimental and Theoretical Ultimate Strengths: (a) TBO
Series Beams; (b) TBU Series Beams
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for beams TBO1 and TBO2, shear/crushing of the concrete in the web and
bottom flange for TBO3, shear/crushing of concrete on all four sides for
TBO4, and shear/crushing in the webs and yielding of the longitudinal re-
inforcement in the top flange for TBOS. In all cases, these failure modes
were accurately predicted by the analyses. Similar accuracy was achieved
with the TBU series beams. It should be noted that difficulties in casting
beams TBU2 and TBU4 resulted in premature failures, and thus lower than
predicted strengths. In the theoretical analysis of beam TBOI, local crushing
at the ends caused by load-transfer problems resulted in the somewhat low
predicted strength.

The load-deformation responses and local strain conditions in the beams
were also modeled extremely well. Shown in Figs. 8 and 9, as typical ex-
amples, are aspects of the predicted versus observed response for beams
TBO3 and TBU3. (Moment-curvature responses were determined from the
longitudinal strains at midspan; torque-twist curves were obtained by inte-
grating the shear strains around the outer band of elements at midspan.) The
predicted moment-curvature responses are seen to be in good agreement with
the experimental values at all stages of loading [see Figs. 8(a) and 9(a)]. In
the torque-twist behavior of beam TBO3 [Fig. 8(b)], the torsional stiffness
is somewhat overestimated initially and underestimated in the late stages of
loading, but is in generally good agreement. The reduced torsional rigidity
observed near ultimate load is partially related to spalling of the concrete
cover, which the theoretical analysis did not attempt to model. For beam
TBU3, the torsional stiffness is initially slightly overestimated [see Fig. 9(b)].
Shown in Figs. 8(c) and 9(c) are the strains in the hoop reinforcement mea-
sured in the web at the mid-depth of the beam. Again, excellent agreement
1s observed. Similar accuracy was attained in modeling the response of the
other beams.

The constitutive modeling of the concrete proved to be a significant factor
in obtaining accurate predictions of response. In particular, the compression
softening effect in the beams subjected to high torques (e.g. beams TBO3,
TBO4, TBOS) had a major influence. In these beams, failure occurred by
shear/crushing of the concrete struts at principal compressive stresses typ-
ically well below the cylinder strength. To have ignored the softening effect
due to the large transverse tensile strains present would have resulted in
highly overestimated ultimate strengths. To have ignored the postcracking
tensile stresses in the concrete (i.e. tension stiffening effect) would have led
to much larger estimated deformations in all beams.

Thus, strains, deformations, ultimate strengths, and failure modes were
all modeled with good accuracy. The finite-element mesh used to model the
beams, although somewhat coarse, appeared to adequately capture the com-
plex nonlinear behavior of the beams. A finer mesh would no doubt have
led to improved modeling. In particular, more elements through the wall
thickness of the members would have allowed one to account for the effects
of spalling as well as allowing for more accurate representation of the re-
inforcement details. However, given the current high computational demands
of the procedure, an analysis using a finer discretization was not feasible.

ANALYSIS APPLICATIONS

Full three-dimensional nonlinear finite-element analysis of reinforced con-
crete structures remains a computationally intensive, time-consuming, and
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expensive undertaking regardless of the formulation or constitutive models
used. The formulation presented herein remains bound by these constraints,
and thus its application potential is limited. However, the formulation’s dem-
onstrated ability to accurately model the complex nonlinear response of rein-
forced concrete solids does provide for some practical applications.

It 1s common procedure in the analysis of large or complex structures (e.g.
offshore structures) to undertake a design check by first employing a linear
elastic analysis to determine force distributions within the structures. From
the forces determined, local stresses are then computed and checked for safety
using some form of local nonlinear or limit-states approach. (The redistri-
bution of forces caused by nonlinear behavior is generally not considered.)
In this case, a local nonlinear analysis using the formulations presented (i.e.
a one-element model) would give a realistic appraisal of local behavior such
as reinforcement stresses, crack widths, deformations, and factor of safety.
This could quickly and easily be performed on a personal computer.

The analysis procedure could also be a viable tool in the analysis and
design of individual structural members of complex geometry or loading, or
for which an accurate determination of strength or deformation response is
required. The procedure can be useful in research applications to investigate,
for example, the influences of stirrup spacing, cover, confinement, and other
design variables.

With respect to global nonlinear analysis of complete structures, currently
such an analysis would only be deemed viable and necessary under unusual
conditions. However, with future improvements expected in computer tech-
nology and finite-element formulations, global nonlinear analysis may be-
come more practical.

NeeDeD RESEARCH

The constitutive relations currently used were extrapolated from a two-
dimensional model derived from test data. Work is required to refine and
verify the accuracy of the three-dimensional formulations. In particular, for
concrete in the direction of the largest principal compressive strain (€.;), the
pronounced softening effect is currently only dependent on the largest prin-
cipal tensile strain (e.,). It would intuitively seem likely that the intermediate
strain (€.,) should have some influence, and that this influence would differ
depending on whether €., was tensile or compressive. Similar questions exist
regarding the relation for the principal tensile stress f,,. Specifically, if con-
crete is also cracked in the intermediate principal strain direction (i.e., €,
> €.), then a more rapidly decaying f,,:€., response would be expected.
Stress-strain relations for the intermediate direction ( £,,:€, ), both for tension
and compression, are also in need of much further study. Finally, the current
constitutive models do not allow for strength increases due to confinement,
or strength decreases due to reversed or cyclic loading. These influences
should also be addressed.

With respect to the finite-clement formulation, work is required to make
the algorithm more efficient. Significant improvements in efficiency could
be attained by implementing a Newton-Raphson technique or equivalent to
reduce the number of iterations required per load stage. In addition, the solv-
er currently employed in SPARCS stores the stiffness matrix bandwidth in

1755



core memory. By implementing a more cfficient frontal solver and storing
the stiffness matrix on disk, larger structures could be analyzed and com-
putation time could be reduced. The analysis of beam members would be
greatly simplified by applying constraint equations to climinate degrees of
freedom. Specifying nodes to deform in a controlled manner (e.g. planc
sections remain plane, etc.) may erode accuracy somewhat but could reduce
the computational requirements to where meaningful nonlinear three-dimen-
sional analyses could be performed on a personal computer. Finally, devel-
opment of higher-order elements and transition elements could facilitate, in
some cases, more efficient modeling of structures.

CONCLUSIONS

A nonlinear finite-element program (SPARCS) was developed for the
analysis of reinforced concrete solids. The program was based on an iterative
secant stiffness formulation, and utilized a low-powered eight-noded brick
element. The three-dimensional constitutive relations incorporated into the
formulation were ones extrapolated from the two-dimensional relations de-
fined in the modified compression field theory (MCFT). The adequacy of
the constitutive models and finite-element formulations were examined by
analyzing a series of overreinforced hollow beams subjected to combined
bending and torsion.

The behavior of the test beams was accurately modeled by the theoretical
analyses. Local strains, overall load-deformation response, ultimate strength,
and failure modes were all predicted accurately. The indication was that the
constitutive relations generalized from the MCFT provided a realistic de-
scription of complex nonlinear behavior in reinforced concrete solids. In par-
ticular, the effects of compression softening and tension stiffening, observed
to be significant factors in the behavior of the test beams, were well rep-
resented.

The secant stiffness formulation developed resulted in a simple but effec-
tive means by which nonlinear finite-element analyses could be imple-
mented. The stiffness formulations retained a form that provided much free-
dom in the type of constitutive relations that could be used, as well as being
easily adaptable to most existing linear elastic finite-element programs. The
analysis algorithm used demonstrated numerical stability and good conver-
gence characteristics. The simple solid rectangular element formulated and
utilized in the analyses was able to provide sufficient accuracy in modeling
the test beams.

Additional research is needed to develop improved constitutive models,
more efficient analysis algorithms, and more powerful elements. However,
the tentative formulations presented herein demonstrated good potential abil-
ity to accurately model complex nonlinear behavior in reinforced concrete
solids. Work will progress in this direction.
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APPENDIX ll. NOTATION

The following symbols are used in this paper:

D = composite material stiffness matrix;
D. = concrete material stiffness matrix;
D, = reinforcement material stiffness matrix;
E. = modulus of elasticity of concrete (initial tangent stiffness);
E,, = secant modulus of concrete in principal tensile strain direction;
E., = secant modulus of concrete in intermediate principal strain direc-
tion;
E.; = secant modulus of concrete in principal compressive strain direc-
tion;
E; = modulus of elasticity of reinforcement in i-direction;
E, = secant modulus of reinforcement in i-direction;
fe = compressive strength of concrete cylinder;
fa = principal tensile stress in concrete;
fe» = intermediate principal stress in concrete;
fs = principal compressive stress in concrete;
f = concrete cracking stress;
fsi = average stress in i-direction reinforcement;
f. = element stress in x-direction;
Sy = element stress in y-direction;
S = yield stress of i-direction reinforcement;
f. = eclement stress in z-direction;
{f} = element stress matrix;
G., = secant shear modulus of concrete relative to 1,2-axes;
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Il

Il

fi

It

fl

0

secant shear modulus of concrete relative to 2,3-axes;
secant shear modulus of concrete relative to 1,3-axes;
element stiffness matrix;

direction cosine with respect to x-axis;

direction cosine with respect to y-axis;

direction cosine with respect to z-axis;

transformation matrix;

element shear stress relative to x,y-axes;

clement shear stress relative to y,z-axes;

element shear stress relative to x,z-axes;

shear strain relative to x,y-axes;

shear strain relative to y,z-axes;

shear strain relative x,z-axes;

element strain matrix;

principal tensile strain in concrete;

intermediate principal strain in concrete;

principal compressive strain in concrete;

strain in concrete at cracking;

strain in x-direction,;

strain in y-direction;

strain in z-direction;

strain in concrete cylinder at peak stress f.;

angle between i-direction reinforcement and normal-to-crack sur-
face; and

steel reinforcement ratio in i-direction.



